Analyse

Description du programme

Le regroupement d'analyse est affilié au laboratoire d'analyse mathématique du CRM qui organise un grand nombre d'événements scientifiques. Les intérêts de recherche des membres du groupe peuvent être classifiés grosso modo sous les rubriques suivantes :

  • Analyse sur les variétés : la géométrie spectrale (valeurs propres et fonctions propres des Laplaciens), le chaos quantique.
  • Analyse classique
  • Analyse complexe : approximation complexe, les groupes discrets à deux générateurs, la dynamique complexe, l’analyse à plusieurs variables complexes et les multifonctions analytiques.
  • Théorie ergodique : la théorie spectrale des transformations qui préservent la mesure, les résultats de type Baire en théorie ergodique et les généralisations des théorèmes ergodiques aux suites de projections généralisées.
  • Analyse fonctionnelle : les algèbres de Banach, les résolvantes et la contrôlabilité des opérateurs, le théorème spectral généralisé et les suites d’opérateurs auto-adjoints et leurs limites faibles, l’analyse des matrices et les inégalités, la théorie spectrale et la physique mathématique.
  • Analyse harmonique : les séries trigonométriques, les formes automorphes, les intégrales singulières, les transformées de Fourier, les opérateurs multiplicateurs, la théorie de Littlewood-Paley, les fonctions harmoniques sur Rn, les espaces de Hardy, les fonctions carrées, les liens entre l’analyse harmonique et la théorie des probabilités et la théorie ergodique.
  • Équations aux dérivées partielles : les liens avec l’analyse fonctionnelle, géométrique et harmonique.
  • Théorie du potentiel : la dualité dans la théorie du potentiel, l’approximation harmonique, le comportement aux frontières et la théorie du potentiel sur les arbres.

Membres du programme

Formation

Ce programme vise à initier les étudiants et les étudiantes à la recherche en analyse, en allant de l’analyse classique à l’analyse moderne, avec des applications à des domaines tels la géométrie, la physique mathématique, la théorie des nombres et la statistique.

Prérequis:

Il est très important que les étudiants et étudiantes qui s’intéressent au programme d’analyse suivent une des séries de cours d’introduction à l’analyse qui suivent. Ces cours donnent la préparation nécessaire pour les cours plus avancés offerts dans le cadre du programme.

  • Measure Theory (Concordia MAST 669)
    Functional Analysis I (Concordia MAST 662)
  • ou
  • Advanced Real Analysis I (McGill MATH-564)
    Advanced Real Analysis II (McGill MATH-565)
    Advanced Complex Analysis (McGill MATH-566)
  • ou
  • Mesure et intégration (Université de Montréal MAT 6111)
    Analyse fonctionnelle (Université de Montréal MAT 6112)
    Topologie générale (Université de Montréal MAT 6310)
    Analyse complexe: sujets spéciaux (Université de Montréal MAT 6182K)
  • ou
  • Analyse fonctionnelle I (Laval MAT-7100)
    Théorie de la mesure et intégration (Laval MAT-6000)
    Équations aux derivées partielles (Laval MAT-7220)

Cours 2022-23

Automne

Convex and Nonlinear Analysis

Starting with classical inequalities for convex sets and functions, the course aims to present famous geometric inequalities like the Brunn-Minkowski inequality and its related functional form, Prekopa-Leindler, the Blaschke-Santalo inequality, the Urysohn inequality, as well as more modern ones such as the reverse isoperimetric inequality, or the Brascamp-Lieb inequality and its reverse form. In the process, we will touch upon log-convex functions, duality for sets and functions and, generally, extremum problems.

Prof. Alina Stancu

MAST 661 A / 837

Institution: Concordia University

Functional Analysis

Topics include: Hilbert spaces, Banach spaces, linear functionals, dual spaces, bounded linear operators, adjoints; the Hahn-Banach, Baire caterogy, Banach-Steinhaus, open mapping and closed graph theorems; compact operators, the Fredholm alternative, the spectral theorem; the weak/weak* topologies.

Prof. Galia Dafni

MAST 662/2 (MAST 837)

Institution: Concordia University

Complex Analysis

The course is planned to consist of two parts: a short and condensed survey of the basic concepts of the theory of functions of one complex variable (from the Cauchy formula to the Riemann theorem on conformal mapping) and an introduction to the theory of compact Riemann surfaces (from elliptic functions to Abel and Riemann-Roch theorems; the latter will be introduced as a very special case of the index theorem).

Prof. Alexey Kokotov

MAST 665, MAST 837, B

Institution: Concordia University

Advanced Real Analysis 1

Review of theory of measure and integration; product measures, Fubini's theorem; Lp spaces; basic principles of Banach spaces; Riesz representation theorem for C(X); Hilbert spaces; part of the material of MATH 565 may be covered as well.

Prof. Jérôme Vétois

MATH 564

Institution: Université McGill

Topics in Analysis: Descriptive Set Theory

Topics in classical descriptive set theory concerning Polish spaces, regularity properties of sets such as measurability/Baire measurability and their connection with infinite games (determinacy), the Borel and projective sets/hierarchies, and change of topology techniques, as well as more modern topics on definable equivalence relations and classification, Polish group actions, and graph combinatorics on Polish spaces.

Prof. Anush Tserunyan

MATH 595

Institution: Université McGill

Mesure et intégration

Introduction : explication des raisons de l'introduction de l'intégrale de Lebesgue. Espaces mesurables. Intégrale : intégrale des fonctions simples, extension, théorème de convergence monotone, théorème de Fatou. Fonctions intégrales. Exemples classiques (Lebesgue, Lebesgue-Stieltjes, etc.). Théorème de la convergence dominée. Modes de convergence. Décompositions des mesures. Produits de mesures : théorèmes de Tonelli et Fubini. Théorème de Riesz et de Radon-Nicodym. L'étudiant qui a réussi le cours MAT-4000 ou MAT-6000 ne peut s'inscrire à ce cours.

Prof.

MAT 6005

Institution: Université Laval

Mesure et intégration (Sherbrooke)

Théorie abstraite de l'intégration. Mesures de Borel et théorème de représentation de Riesz. Espaces Lp. Mesures complexes et théorème de Radon-Nikodym. Intégration sur les espaces produits et le théorème de Fubini. Différentiation.

Prof. Klaus Hermann

MAT712

Institution: Université de Sherbrooke

Analyse

Le cours se veut une introduction à certains outils d'analyse pour étudier des équations aux dérivées partielles ayant des origines géométriques.  Les sujets suivants seront couverts:  équation de Laplace, principe du maximum, espaces de Hölder, estimations de Schauder, théorèmes du point fixe, équations elliptiques quasi-linéaires, espaces de Hölder paraboliques, équations paraboliques quasi-linéaires et flots géométriques.

Prof. Frédéric Rochon

MAT 7610

Institution: Université du Québec à Montréal

Hiver

Differential Equations

Prof. A. Kokotov

MAST 666/4, A (MAST 841)

Institution: Concordia University

Measure Theory

Measure and integration, measure spaces, convergence theorems, Radon-Nikodem theorem, measure and outer measure, extension theorem, product measures, Hausdorf measure, LP-spaces, Riesz theorem, bounded linear functionals on C(X), conditional expectations and martingales.

Prof. Alexander Shnirelman

MAST 669/D / MAST837D

Institution: Concordia University

Analyse complexe avancée

Fonctions holomorphes, principe d'identité, théorème de l'application ouverte, théorème d'inversion locale, lemme de Schwarz, principe de Phragmén-Lindelöf. Familles normales. Fonctions univalentes, théorèmes de Riemann et de Koebe. Théorème de Runge. Produits infinis. Métriques riemanniennes, théorème de Schwarz-Pick, courbure, théorèmes d'Ahlfors, de Picard et de Montel.

On peut suivre ce cours virtuellement au besoin.

Prof. Javad Mashreghi

MAT 7115

Institution: Université Laval

Analyse fonctionnelle (UdeM)

Espaces d’Hilbert, de Banach, théorèmes de Hahn-Banach, de Banach-Steinhaus et du graphe fermé, topologies faibles, espaces réflexifs, décomposition spectrale des opérateurs auto-adjoints compacts.

Prof. Marlène Frigon

MAT 6124

Institution: Université de Montréal

Analyse géométrique

Le laplacien et la théorie elliptique. Espaces de Sobolev. Éléments de la géométrie spectrale. Applications analytiques et topologiques à la géométrie riemannienne, symplectique ou kahlerienne.

Prof. Egor Shelukhin

MAT6230

Institution: Université de Montréal

Généralisations de l’analyse complexe et leurs applications

Les thèmes principaux qui seront étudiés dans ce cours sont les quaternions, les algèbres de Clifford ainsi que la théorie des fonctions analytiques généralisées (fonctions pseudo-analytiques). Ces structures seront également utilisées pour considérer certaines applications, principalement en physique quantique. Pour toutes ces structures, nous allons porter une attention particulière aux généralisations des fonctions analytiques complexes. Dans le cas des quaternions et des algèbres de Clifford, les propriétés algébriques ainsi que géométriques seront considérées. La théorie des fonctions pseudo-analytiques généralise et préserve plusieurs caractéristiques de la théorie des fonctions analytiques complexes. Le système de Cauchy-Riemann est alors substitué par un système plus général, appelé équations de Vekua, qui apparaît dans plusieurs problèmes de la physique mathématique.

Prof. Sébastien Tremblay

UQTR MAP6021-00

Institution: Université du Québec à Trois-Rivières