Le regroupement d'analyse est affilié au laboratoire d'analyse mathématique du CRM qui organise un grand nombre d'événements scientifiques. Les intérêts de recherche des membres du groupe peuvent être classifiés grosso modo sous les rubriques suivantes :
Ce programme vise à initier les étudiants et les étudiantes à la recherche en analyse, en allant de l’analyse classique à l’analyse moderne, avec des applications à des domaines tels la géométrie, la physique mathématique, la théorie des nombres et la statistique.
Il est très important que les étudiants et étudiantes qui s’intéressent au programme d’analyse suivent une des séries de cours d’introduction à l’analyse qui suivent. Ces cours donnent la préparation nécessaire pour les cours plus avancés offerts dans le cadre du programme.
Starting with classical inequalities for convex sets and functions, the course aims to present famous geometric inequalities like the Brunn-Minkowski inequality and its related functional form, Prekopa-Leindler, the Blaschke-Santalo inequality, the Urysohn inequality, as well as more modern ones such as the reverse isoperimetric inequality, or the Brascamp-Lieb inequality and its reverse form. In the process, we will touch upon log-convex functions, duality for sets and functions and, generally, extremum problems.
Topics include: Hilbert spaces, Banach spaces, linear functionals, dual spaces, bounded linear operators, adjoints; the Hahn-Banach, Baire caterogy, Banach-Steinhaus, open mapping and closed graph theorems; compact operators, the Fredholm alternative, the spectral theorem; the weak/weak* topologies.
The course is planned to consist of two parts: a short and condensed survey of the basic concepts of the theory of functions of one complex variable (from the Cauchy formula to the Riemann theorem on conformal mapping) and an introduction to the theory of compact Riemann surfaces (from elliptic functions to Abel and Riemann-Roch theorems; the latter will be introduced as a very special case of the index theorem).
Review of theory of measure and integration; product measures, Fubini's theorem; Lp spaces; basic principles of Banach spaces; Riesz representation theorem for C(X); Hilbert spaces; part of the material of MATH 565 may be covered as well.
Topics in classical descriptive set theory concerning Polish spaces, regularity properties of sets such as measurability/Baire measurability and their connection with infinite games (determinacy), the Borel and projective sets/hierarchies, and change of topology techniques, as well as more modern topics on definable equivalence relations and classification, Polish group actions, and graph combinatorics on Polish spaces.
Introduction : explication des raisons de l'introduction de l'intégrale de Lebesgue. Espaces mesurables. Intégrale : intégrale des fonctions simples, extension, théorème de convergence monotone, théorème de Fatou. Fonctions intégrales. Exemples classiques (Lebesgue, Lebesgue-Stieltjes, etc.). Théorème de la convergence dominée. Modes de convergence. Décompositions des mesures. Produits de mesures : théorèmes de Tonelli et Fubini. Théorème de Riesz et de Radon-Nicodym. L'étudiant qui a réussi le cours MAT-4000 ou MAT-6000 ne peut s'inscrire à ce cours.
Théorie abstraite de l'intégration. Mesures de Borel et théorème de représentation de Riesz. Espaces Lp. Mesures complexes et théorème de Radon-Nikodym. Intégration sur les espaces produits et le théorème de Fubini. Différentiation.
Le cours se veut une introduction à certains outils d'analyse pour étudier des équations aux dérivées partielles ayant des origines géométriques. Les sujets suivants seront couverts: équation de Laplace, principe du maximum, espaces de Hölder, estimations de Schauder, théorèmes du point fixe, équations elliptiques quasi-linéaires, espaces de Hölder paraboliques, équations paraboliques quasi-linéaires et flots géométriques.
Measure and integration, measure spaces, convergence theorems, Radon-Nikodem theorem, measure and outer measure, extension theorem, product measures, Hausdorf measure, LP-spaces, Riesz theorem, bounded linear functionals on C(X), conditional expectations and martingales.
Fonctions holomorphes, principe d'identité, théorème de l'application ouverte, théorème d'inversion locale, lemme de Schwarz, principe de Phragmén-Lindelöf. Familles normales. Fonctions univalentes, théorèmes de Riemann et de Koebe. Théorème de Runge. Produits infinis. Métriques riemanniennes, théorème de Schwarz-Pick, courbure, théorèmes d'Ahlfors, de Picard et de Montel.
On peut suivre ce cours virtuellement au besoin.
Espaces d’Hilbert, de Banach, théorèmes de Hahn-Banach, de Banach-Steinhaus et du graphe fermé, topologies faibles, espaces réflexifs, décomposition spectrale des opérateurs auto-adjoints compacts.
Le laplacien et la théorie elliptique. Espaces de Sobolev. Éléments de la géométrie spectrale. Applications analytiques et topologiques à la géométrie riemannienne, symplectique ou kahlerienne.
Les thèmes principaux qui seront étudiés dans ce cours sont les quaternions, les algèbres de Clifford ainsi que la théorie des fonctions analytiques généralisées (fonctions pseudo-analytiques). Ces structures seront également utilisées pour considérer certaines applications, principalement en physique quantique. Pour toutes ces structures, nous allons porter une attention particulière aux généralisations des fonctions analytiques complexes. Dans le cas des quaternions et des algèbres de Clifford, les propriétés algébriques ainsi que géométriques seront considérées. La théorie des fonctions pseudo-analytiques généralise et préserve plusieurs caractéristiques de la théorie des fonctions analytiques complexes. Le système de Cauchy-Riemann est alors substitué par un système plus général, appelé équations de Vekua, qui apparaît dans plusieurs problèmes de la physique mathématique.