La théorie des probabilités est l’étude mathématique des phénomènes caractérisés par le hasard et l’incertitude. Les spécialistes de cette discipline au sein de l’ISM s’intéressent à un large éventail de problèmes théoriques et appliqués où les probabilités discrètes et continues ont un rôle à jouer. Leurs travaux concernent notamment le développement et l’analyse de modèles probabilistes pour des phénomènes physiques, biologiques, statistiques et informatiques. Ils étudient entre autres la physique statistique dans un environnement aléatoire, les processus évolutifs en biologie, les systèmes à portée variable, les paysages énergétiques aléatoires, l’analyse de la structure de données au moyen d’arborescences aléatoires, la génétique et la biologie des populations.
Plusieurs membres du groupe font également partie du laboratoire de probabilités du CRM.
Les étudiants intéressés à poursuivre leurs études graduées dans l'un ou l'autre des domaines mentionnés ci-dessus sont invités s'inscrire au programme. Il n'y a pas de prérequis spécifiques autres que ceux exigés par chaque département. Cependant les recommandations suivantes devraient être suivies et les cours devraient être choisis en consultation avec un professeur appartenant au groupe responsable du programme.
Les étudiants intégrés au programme devraient maîtriser les fondements de la théorie des probabilités. Ces étudiants devront prendre les cours intermédiaires suivants: théorie de la mesure et théorie des probabilités. Ils devront ensuite suivre des cours spécialisés.
This course covers most of the materials in the first seven chapters of Probability and Random Processes by Grimmett and Stirzaker. In particular, it covers topics such as generating and characteristic functions and their applications in random walk and branching process, different modes of convergence and an introduction of martingales.
Probability spaces. Random variables and their expectations. Convergence of random variables in Lp. Independence and conditional expectation. Introduction to Martingales. Limit theorems including Kolmogorov's Strong Law of Large Numbers.
Espace de probabilité, variables aléatoires, indépendance, espérance mathématique, modes de convergence, lois des grands nombres, théorème central limite, espérance conditionnelle et martingales. Introduction au mouvement brownien.
Processus de branchement : modèles de Wright-Fisher, de Moran. Modèles à une infinité d’allèles, de sites. Facteurs d’évolution: sélection, mutation, migration, recombinaison, apparentement. Reconstruction et inférence de réseaux génétiques.
Tribus et variables aléatoires. Théorie de l'intégration: théorème de Lebesgue, espace Lp, théorème de Fubini. Construction de mesures, mesure de Radon. Indépendance. Conditionnement.
In the first part of this course we cover some basic topics on Markov chains, optimal stopping problems for Markov chains and discrete time Martingales. The second part starts with an introduction of various exotic properties of Brownian motion. We then introduce stochastic integrals with respect to Brownian motion, Ito's formula together with Girsanov transform and Feyman-Kac formula.
Characteristic functions: elementary properties, inversion formula, uniqueness, convolution and continuity theorems. Weak convergence. Central limit theorem. Additional topic(s) chosen (at discretion of instructor) from: Martingale Theory; Brownian motion, stochastic calculus.
Mouvement brownien, intégrale stochastique, formule d’Itô, équations différentielles stochastiques, théorèmes de représentation, théorème de Girsanov. Formule de Black et Scholes.