Cours 2018-19

Pour s'inscrire à un cours ISM, il faut d'abord obtenir l'approbation de son choix de cours par son directeur de recherche et par le responsable des études supérieures de son département. Vous pouvez ensuite vous inscrire au cours électroniquement en utilisant le formulaire disponible sur le site de la CRÉPUQ, l'organisme qui gère les inscriptions interuniversitaires. 
Le formulaire sera acheminé aux registraires de l'université d'attache et de l'université d'accueil pour approbation.

Procédures supplémentaires pour s'inscrire à un cours à l'Université McGill :
Après l'inscription via le site de la CRÉPUQ, il faudra attendre la réception de la confirmation d'inscription. L'étudiant devra ensuite s'inscrire au cours choisi à l'Université McGill via le système MINERVA.

Dates importantes : Concordia, HEC Montréal, Laval, McGill, Université de Montréal, UQAM, UQTR, Université de Sherbrooke

Horaire des cours:

Algèbre et théorie des nombres

Automne

Topics in Algebra: Galois theory for schemes

The course will develop the theory of the etale fundamental group of a connected scheme in parallel to the Galois theory of a field and the theory of the fundamental group of a topological space. Some knowledge of Algebraic Geometry would be helpful but not necessary as the course will be self  contained.

Prof. Adrian Iovita

MAST 699/2 ou/or MAST 833

Institution: Concordia University

Elliptic Curves

This course will cover the basic theory of elliptic curves and algebraic curves. The prerequisites for this course is the standard background in abstract algebra (groups, rings, field extensions, Galois theory etc). A first course in algebraic number theory is recommended, but not mandatory. The course is open to all graduate students, either at the master or the Ph.D. level.

Recommended Textbook: J. Silverman, The Arithmetic of Elliptic Curves.

Prof. Chantal David

MAST 699/2 E / 833/2

Institution: Concordia University

Introduction to Class Field Theory

The course will describe the statement and proofs of the main results of class field theory, both local and global, following the treatment given in the textbook of Cassels-Frolich, which shall be followed fairly closely.

Prof. Henri Darmon

MATH 596 - 001

Institution: Université McGill

Théorie algébrique des nombres

Les sujets traités comprennent:

  • Nombres et entiers algébriques
  • Unités
  • Norme, trace, discriminant et ramification
  • Base intégrale
  • Corps quadratiques, cyclotomiques
  • Groupes de classes
  • Décomposition en idéaux premiers
  • Équations diophantiennes.

Prof. Matilde Lalin

MAT 6617

Institution: Université de Montréal

Méthodes de crible et applications

Ceci est un cours d'introduction aux méthodes de crible et à leurs applications. Après avoir passé en revue quelques éléments de base dans la théorie probabiliste des nombres, nous présenterons et étudierons les principaux objets de la théorie des cribles. En particulier, nous allons développer le crible combinatoire et le crible de Selberg et les utiliser pour prouver diverses estimations sur les nombres premiers. Nous utiliserons ensuite la théorie des cribles pour étudier les fonctions L et établir le théorème de Linnik. La preuve de ce résultat fournit un point d'entrée naturel à la théorie des estimations de sommes bilinéaires et au développement du grand crible. Comme application de ce cercle d'idées, nous allons démontrer le théorème de Bombieri-Vinogradov. Le cours se terminera par une discussion des récents développements spectaculaires sur les écarts bornés et les grands entre les nombres premiers.

Prof. Dimitris Koukoulopoulos

MAT6684V

Institution: Université de Montréal

Compact Lie Groups and their Representations

Prerequisites. Strong background in linear algebra. Familiarity with differential geometry (e.g. tangent bundles, Frobenius’s theorem on integrable subbundles of the tangent bundle), real analysis (e.g. Stone-Weierstrass theorem, Hilbert spaces, compact operators), and representation theory of finite groups would be very useful too.

Course textbooks. All optional.
Representations of Compact Lie Groups by Brocker and Tom Dieck.
Lie Groups by Bump.

Syllabus. Topics will include: examples of classical compact Lie groups and Lie algebras, Haar measure, the Peter-Weyl Theorem, the exponential map, maximal tori and their conjugacy, the Weyl group, Weyl integration formula, roots and root systems, Dynkin diagrams, highest weight theory, Weyl character formula.

Time permitting, we may also discuss applications of the above to random matrix theory.

Evaluation. To be determined after our organizational meeting.

Prof. Michael Lipnowski

MATH 595

Institution: Université McGill

Hiver

Topics in Algebra: p-adic modular forms

This course will present the theory of p-adic and overconvergent modular forms as they appear in the work of J.-P. Serre, N. Katz and R. Coleman. Basic knowledge of classical modular forms (for example as they appear in "A course in Arithmetic" by J.-P. Serre) and of algebraic geometry is required.     

Prof. Adrian Iovita

MAST 699/4 C ou/or MAST 833

Institution: Concordia University

Topics in Algebra & Number Theory: Elliptic Curves II

This course will cover advanced topics in the theory of elliptic curves. It is intended as a continuation of the course “Elliptic Curves” to be taught by Prof. David in the Fall at Concordia University. Although it is not required to take David’s course, I will assume that students know the material covered in David’s course. The exact selection of topics will be determined once a more precise syllabus for David’s course becomes available, but they will mostly be chosen from Silverman’s books on elliptic curves.

Prof. Eyal Goren

MATH 596

Institution: Université McGill

La distribution des nombres premiers

The goal of this course is to give a complete proof of the prime number theorem, a proof that will help the student appreciate many of the important theorems in the subject. We will review in detail the motivation for the prime number theorem (and other conjectures and theorems about prime numbers), and focus on the background needed in both number theory and analysis (so that students feel comfortable with the techniques used). Then we will prove the prime number theorem and begin to appreciate the importance of the Riemann Hypothesis.  Having gone slowly over this we will be ready to use these ideas in many different directions. Our only scheduled goal will be to prove Dirichlet's theorem, that there are infinitely many primes in each reduced residue class a mod q, though we will at least sketch how to estimate how many primes like in each such class.  Moreover, if things go well, we will apply these ideas to primes in short intervals, in short arithmetic progressions, study least quadratic non-residues, ....

Tues and Thurs 10:30-12:30 in room 5183

Prof. Andrew Granville

MAT6627

Institution: Université de Montréal

Analyse p-adique et groupe de Lie p-adique

Les sujets traités comprennent: Nombres p-adiques, corps p-adiques, topologie p-adique, théorie d'évaluation, théorie de ramification, groupe pro-fini, groupe pro-p, p-groupe puissant, groupe uniformément puissant, structure de Lie sur des groupes pro-p, algèbre d'Iwasawa, théorème de structure sur les modules d'Iwasawa.

Prof. Antonio Lei

MAT 7390

Institution: Université Laval

Algèbre: sujets spéciaux (Algèbres et modules)

Algèbres et morphismes, modules sur une algèbre, morphismes et suites exactes, modules de morphismes. Catégorie de modules, produits et sommes directs, équivalence de catégories. Foncteurs Hom, exactitude de foncteurs, modules projectifs et injectifs. Produits tensoriels de modules, théorèmes de Watts, algèbre tensorielle et extérieure. Algèbres des chemins d'un carquois. Modules artiniens et noethériens, suite de composition, théorème de Jordan-Hölder. Radicaux de modules, socle et coiffe.

Sources principales

• I Assem, Algèbres et modules, Masson et Les presses de l'Université d'Ottawa (1997).
• I Assem, D Simson, A Skowronski, Elements of the representation theory of associative algebras, Cambridge University Press (2006).

Prof. Yvan Saint-Aubin

MAT6681Q

Institution: Université de Montréal

Analyse

Automne

Convex and Nonlinear Analysis

Starting with classical inequalities for convex sets and functions, the course aims to present famous geometric inequalities like the Brunn-Minkowski inequality and its related functional form, Prekopa-Leindler, the Blaschke-Santalo inequality, the Urysohn inequality, as well as more modern ones such as the reverse isoperimetric inequality, or the Brascamp-Lieb inequality and its reverse form. In the process, we will touch upon log-convex functions, duality for sets and functions and, generally, extremum problems.

Prof. Alina Stancu

MAST 661 A / 837

Institution: Concordia University

Advanced Real Analysis 1

Review of theory of measure and integration; product measures, Fubini's theorem; Lp spaces; basic principles of Banach spaces; Riesz representation theorem for C(X); Hilbert spaces; part of the material of MATH 565 may be covered as well.

Prof. John Toth

MATH 564

Institution: Université McGill

Functional Analysis 1

Banach spaces. Hilbert spaces and linear operators on these. Spectral theory. Banach algebras. A brief introduction to locally convex spaces.

Prof. Stephen Drury

MATH 635

Institution: Université McGill

Mesure et intégration

Contenu du cours: ensembles mesurables,  mesure de Lebesgue; principes de Littlewood, théorèmes de Lusin et de Egorov; intégrale de Lebesgue, théorème de Fubini, espaces L1 et L2; mesures absolument continues, théorème de Radon-Nikodym; éléments de la théorie ergodique; mesure et dimension de Hausdorff, ensembles fractales.

Prof. Iosif Polterovich

MAT 6111

Institution: Université de Montréal

Analyse fonctionnelle I

  • Espaces métriques
  • Topologiques, d'Hilbert, de Banach
  • Théorèmes de Hahn-Banach, de Banach-Steinhaus et du graphe fermé
  • Topologies faibles
  • Espaces réflexifs
  • Décomposition spectrale des opérateurs auto-adjoints compacts.

Prof. Marlène Frigon

MAT 6112

Institution: Université de Montréal

Équations différentielles non linéaires

Ce cours est une introduction au traitement des équations différentielles non linéaires et plus généralement, à la théorie des systèmes dynamiques. Il s’agit d’un cours de cycle supérieur. L’objectif est d’initier l’étudiant à la théorie des systèmes dynamiques et à ses applications. En un premier temps, des techniques classiques d’analyse de dynamique seront présentées : flots continus et discrets, existence et stabilité de solutions, variétés invariantes, bifurcations et formes normales. En un deuxième temps, une introduction à la théorie ergodique et un survol d’applications modernes sera présentée : dynamique chaotique, attracteurs étranges, entropie dynamique, systèmes à haute dimension (ex. réseaux), dynamique entrainée et transformation d’information.
Une attention particulière sera accordée au traitement de systèmes dynamiques performant des computations.

À la fin du cours, l’étudiant sera en mesure d’appliquer des techniques d’analyse de systèmes dynamiques à des problèmes concrets, ainsi que de naviguer la littérature moderne de systèmes dynamiques. Plusieurs exemples et applications faisant usage de simulations numériques seront utilisés. Pour suivre ce cours, l’étudiant doit maîtriser, à un niveau de premier cycle, des notions de calcul, d’équations différentielles linéaires, d’algèbre linéaire et de probabilité.

Horaire des cours :

Mardi : 10h30 à 12h00, 5183 Pav. Andre-Aisenstadt
Jeudi : 10h30 à 12h00, 5183 Pav. Andre-Aisenstadt

Prof. Guillaume Lajoie

MAT 6115

Institution: Université de Montréal

Hiver

Équations aux dérivées partielles - Université de Montréal

Équation des ondes, problème de Sturm-Liouville, distributions et transformation de Fourier, équation de Laplace, espaces de Sobolev, valeurs et fonctions propres du laplacien, éléments de la théorie spectrale, équation de la chaleur.

 

Prof. Egor Shelukhin

MAT 6110

Institution: Université de Montréal

Biostatistique

Automne

Epidemiology: Introduction and Statistical Models

Examples of applications of statistics and probability in epidemiologic research. Sources of epidemiologic data (surveys, experimental and non-experimental studies). Elementary data analysis for single and comparative epidemiologic parameters.

Prof. James Hanley

BIOS 601

Institution: Université McGill

Causal Inference

Foundations of causal inference in biostatistics. Statistical methods based on potential outcomes; propensity scores, marginal structural models, instrumental variables, structural nested models. Introduction to semiparametric theory.

Prof. Robert Platt

BIOS 610

Institution: Université McGill

Advanced Generalized Linear Models

Statistical methods for multinomial outcomes, overdispersion, and continuous and categorical correlated data; approaches to inference (estimating equations, likelihood-based methods, semi-parametric methods); analysis of longitudinal data; theoretical content and applications.

Prof. Alexandra Schmidt

BIOS 612

Institution: Université McGill

Data Analysis and Report Writing

Common data-analytic problems. Practical approaches to complex data. Graphical and tabular presentation of results. Writing reports for scientific journals, research collaborators, consulting clients.

Prof. James Hanley

BIOS 624

Institution: Université McGill

Analysis of Correlated Data

This course will provide a basic introduction to methods for analysis of correlated, or dependent, data. These data arise when observations are not gathered independently; examples are longitudinal data, household data, cluster samples, etc. Basic descriptive methods and introduction to regression methods for both continuous and discrete outcomes.

Prof. P. Saha-Chauduri

EPIB 627

Institution: Université McGill

Statistics in Genomics

Prof. Celia Greenwood

HGEN 667

Institution: Université McGill

Méthodes statistiques en épidémiologie génétique (1 crédit)

Brève introduction aux concepts génétiques; épidémiologie génétique, concepts et introduction; études d’agrégation familiale; analyse de liaison; études d’association de population; analyse de liaison et études d’association pour traits quantitatifs.

7 au 23 novembre 2018

Prof.

MAT 818E

Institution: Université du Québec à Montréal

Hiver

Epidemiology: Regression Models

Multivariable regression models for proportions, rates, and their differences/ratios; Conditional logistic regression; Proportional hazards and other parametric/semi-parametric models; unmatched, nested, and self-matched case-control studies; links to Cox's method; Rate ratio estimation when "time-dependent" membership in contrasted categories.

Prof. Erica Moodie

BIOS 602

Institution: Université McGill

Advanced Modelling: Survival and Other Multivariate Data

Advanced applied biostatistics course dealing with flexible modeling of non-linear effects of continuous covariates in multivariable analyses, and survival data, including e.g. time-varying covariates and time-dependent or cumulative effects. Focus on the concepts, limitations and advantages of specific methods, and interpretation of their results. In addition to 3 hours of weekly lectures, shared with epidemiology students, an additional hour/week focuses on statistical inference and complex simulation methods. Students get hands-on experience in designing and implementing simulations for survival analyses, through individual term projects.

Prof. Michal Abrahamowicz

BIOS 637

Institution: Université McGill

Combinatoire et algèbre

Automne

Algorithmes en combinatoire

Étudier certains algorithmes qui sont omniprésents en combinatoire ; et surtout pour comprendre leur rôle dans des interactions avec la géométrie et l’algèbre. On va développer les notions combinatoires et algorithmiques nécessaires, en particulier il n'y a pas de préalables formels (contrairement à ce qui est indiqué dans la description officielle du cours). Sujets : Représentation informatisée des structures combinatoires (permutations, partitions, compositions, etc.) ; génération exhaustive et aléatoire de ces structures; algorithme de Robinson-Schensted ; arbres binaires de recherche ; structures de données ; algorithmes sur les graphes.

Prof. Franco Saliola

MAT7441

Institution: Université du Québec à Montréal

Hiver

Théorie des anneaux

Ce cours est une introduction à la théorie des anneaux non-commutatifs.  On commencera avec un rappel des certains idées de base sur les anneaux et le modules. On abordera la théorie de Wedderburn-Artin, et la structure des anneaux semi-simples.  On étudiera le radical de Jacobson et le radical premier, ainsi que les anneaux premiers et primitifs.  D'autres sujets pourraient être ajoutés si on a assez de temps, choisi selon les intérêts des étudiants.  

Prof. Hugh Thomas

MAT7100

Institution: Université du Québec à Montréal

Advanced Set Theory

Topics may be chosen from combinatorial set theory, Goedel's constructible sets, forcing, large cardinals.

Prof. Marcin Sabok

MATH 590

Institution: Université McGill

Théorie des graphes

Le contenu du cours sera en partie précisé suivant les intérêts des étudiants. Les grandes lignes sont les suivantes :

  • Définitions et résultats de base.
  • Arbres, arborescences.
  • Connexité : théorèmes de Menger et les équivalences entre les résultats de Menger, Dilworth, König, Hall, Ford-Fulkerson (flots).
  • Homomorphismes, colorations.
  • Graphes de Cayley.
  • Théorie extrémale : théorèmes de Turan, de Ramsey.
  • Graphes infinis : théorème de Ramsey, compacité.

Prof. Gena Hahn

MAT 6490

Institution: Université de Montréal

Dynamique non-linéaire

Automne

Topics in Applied Mathematics: Delay Differential Equations

Many physical processes are modelled by differential equations which involve delays. This course will provide an introduction to delay differential equations (DDEs) concentrating on the key tools needed to understand the behaviour of these equations, and also some of numerical techniques used to approximate solutions. Throughout we will emphasise the similarities and differences between DDEs and ordinary differential equations (ODEs).

Topics covered will include: DDEs as infinite dimensional dynamical systems, breaking points and smoothing of DDE solutions, continuous Runge-Kutta methods for ODEs and DDEs, linear stability of steady states, bifurcation theory. A selection of more advanced topics will also be covered. The choice of topics will depend on time and the preferences of the participants, but may include state-dependent delays, distributed delays, numerical continuation and bifurcation techniques.

Prof. Tony Humphries

MATH 597

Institution: Université McGill

Équations différentielles non linéaires

Ce cours est une introduction au traitement des équations différentielles non linéaires et plus généralement, à la théorie des systèmes dynamiques. Il s’agit d’un cours de cycle supérieur. L’objectif est d’initier l’étudiant à la théorie des systèmes dynamiques et à ses applications. En un premier temps, des techniques classiques d’analyse de dynamique seront présentées : flots continus et discrets, existence et stabilité de solutions, variétés invariantes, bifurcations et formes normales. En un deuxième temps, une introduction à la théorie ergodique et un survol d’applications modernes sera présentée : dynamique chaotique, attracteurs étranges, entropie dynamique, systèmes à haute dimension (ex. réseaux), dynamique entrainée et transformation d’information.
Une attention particulière sera accordée au traitement de systèmes dynamiques performant des computations.

À la fin du cours, l’étudiant sera en mesure d’appliquer des techniques d’analyse de systèmes dynamiques à des problèmes concrets, ainsi que de naviguer la littérature moderne de systèmes dynamiques. Plusieurs exemples et applications faisant usage de simulations numériques seront utilisés. Pour suivre ce cours, l’étudiant doit maîtriser, à un niveau de premier cycle, des notions de calcul, d’équations différentielles linéaires, d’algèbre linéaire et de probabilité.

Horaire des cours :

Mardi : 10h30 à 12h00, 5183 Pav. Andre-Aisenstadt
Jeudi : 10h30 à 12h00, 5183 Pav. Andre-Aisenstadt

Prof. Guillaume Lajoie

MAT 6115

Institution: Université de Montréal

Géométrie et topologie

Automne

Geometry and Topology I

Basic point-set topology, including connectedness, compactness, product spaces, separation axioms, metric spaces. The fundamental group and covering spaces. Simplicial complexes. Singular and simplicial homology. Part of the material of MATH 577 may be covered as well.

Prof. Daniel T. Wise

MATH 576

Institution: Université McGill

Topics in Differential Geometry

In this course I plan to cover some basic material of Kähler geometry, roughly in line with the first chapter of the book of Griffiths and Harris, or Claire Voisin’s book on Hodge theory and Complex algebraic geometry (book 1).

 Material should include:

 -Rudiments of function theory of several complex variables,

-Complex manifolds, de Rham and Dolbeault cohomology,

- Sheaf theory and cohomology theory,

-Kähler metrics, connections and curvature,

-Harmonic theory: the Hodge theorem and the  Hodge decomposition,

-The Lefschetz decomposition.

 Closing, if time allows, with some material on periods and Hodge structures, or maybe on Hyperkähler manifolds.

Prof. Jacques Hurtubise

MATH 599

Institution: Université McGill

Géométrie différentielle - UdeM

Rappels de topologie et d’algèbre tensorielle. Variétés différentiables, espaces tangents, différentielle des fonctions, partitions de l’unité, tenseurs et formes différentielles, champs de vecteurs, théorème fondamental des EDO et dérivée de Lie. Intégration et théorème de Stokes, théorème de Fröbenius sur les distributions, cohomologie et théorème de DeRham. Métriques riemanniennes, connexions, dérivée covariante, géodésiques et courbure. 

Prof. François Lalonde

MAT6381V

Institution: Université de Montréal

Groupes ordonnables et la topologie de basse dimension

Dans ce cours nous développerons les éléments de base de la théorie des groupes ordonnables et leur applications à la topologie de basse dimension. En particulier, nous discuterons de la conjecture de L-espace qui prétend l'équivalence entre l'ordonnabilité du groupe fondamentale d'une 3-variété et de certaines de ses propriétés topologique et analytique.

Prof. Steven Boyer

MAT 993X

Institution: Université du Québec à Montréal

Hiver

Geometry and Topology 2

1. Differentiable manifolds:
Differentiable manifolds, tangent and cotangent spaces, smooth maps, submanifolds, tangent and cotangent bundles, implicit function theorem, partition of unity. Examples include real projective spaces, real Grassmannians and some classical matrix Lie groups.
2. Differential forms and de Rham cohomology:
Review of exterior algebra, the exterior differential and the definition of de Rham cohomology. The Poincaré Lemma and the homotopy invariance of de Rham cohomology. The Mayer-Vietoris sequence, computation of de Rham cohomology for spheres and real projective spaces. Finite-dimensionality results for manifolds with good covers, the Kunneth formula and the cohomology of tori. Integration of differential forms and Poincare duality on compact orientable manifolds.
3. An introduction to Riemannian geometry:
Existence of Riemannian metrics, isometric immersions, parallel transport and the Levi-Civita connection, the fundamental theorem of Riemannian geometry, Riemannian curvature. Geodesics, normal coordinates, geodesic completeness and the Hopf-Rinow Theorem.

Textbooks:

W. Boothby, An introduction to differentiable manifolds and Riemannian geometry, Academic Press.
R. Bott and L. Tu, Differential forms in algebraic topology, Springer.

Prof. Niky Kamran

MATH 577

Institution: Université McGill

Algebraic Topology

Textbook: Allen Hatcher, Algebraic Topology.

 Syllabus: CW-complexes, cellular approximation theorem. Homotopy groups, long exact sequence for a fiber bundle. Whitehead theorem. Freudenthal suspension theorem. Singular and cellular homology and cohomology. Hurewicz theorem. Mayer-Vietoris sequence. Universal coefficients theorem. Cup product, Kunneth formula, Poincare duality.

 Prerequisites: MATH 576 or equivalent or permission of instructor.

Prof. Piotr Przytycki

MATH 582

Institution: Université McGill

Topics in Geometry and Topology : Introduction to mathematical treatment of Einstein's general relativity theory

If you have taken or are taking the physics GR course, the two courses should complement each other nicely. In particular, there will not be much overlap. While a considerable part of the physics course is (probably) spent on introducing differential geometry, we will assume that the students are comfortable with basic differential geometry. Exact solutions with high degree of symmetry will be studied as prototypical examples of spacetimes, but our focus will be on the properties of realistic spacetimes with no or very little symmetry.

 The following topics will be treated.

• Some exact solutions, including black hole and cosmological solutions.

• Lorentzian geometry, geodesic congruences, variational characterization of geodesics.

• Singularity theorems of Penrose and Hawking. These theorems are the highlight of the course, and basically show that spacetimes cannot avoid developing singularities.

• Cauchy problem, if time permits. This result says that the state of the universe "today" completely determines what happens in the future in a certain sense.

 The grading will be based on a few homework, and a course project, where the student studies a special topic and gives a presentation.

Prof. Gantumur Tsogtgerel

MATH 599

Institution: Université McGill

Géométrie riemannienne

Ce cours est proposé comme une introduction à la géométrie riemannienne. Nous couvrirons les sujets classiques suivants : Variétés riemanniennes, connexions, géodésiques. Exemples de variétés riemanniennes. Courbure sectionnelle, courbure de Ricci, courbure scalaire. Lemme de Gauss, application exponentielle, théorème de Hopf-Rinow. Transport parallèle, holonomie, théorème d'irréductibilité et de De Rham. Variations première et seconde, champs de Jacobi, cut locus. Théorème de Bonnet-Myers, théorème de Synge, théorème de Cartan-Hadamard. Théorème de comparaison de Rauch, Alexandrov et Toponogov. Submersion riemannienne, espaces homogènes riemanniens, espaces symétriques, l'exemple de l'espace projectif complexe. Théorème de Hodge-De Rham. Théorème de Bochner. Volume, théorèmes de Bishop et de Heintze-Karcher. Sous-variétés, seconde forme fondamentale, équation de Gauss. Inégalités isopérimétriques. Géométrie spectrale. Théorème de finitude de Cheeger.

Prof. Vestislav Apostolov

MAT 9231

Institution: Université du Québec à Montréal

Mathématiques actuarielles et financières

Automne

Mathematical and Computational Finance II

This course focuses on computational aspects, implementation, continuous-time models, and advanced topics in Mathematical and Computational Finance.  We shall cover the following topics (time permitting):

  • Calibration and implementation
  • Brownian motion and stochastic calculus
  • Elements of continuous time finance
  • PDE methods
  • Monte-Carlo methods
  • Exotic derivatives
  • Risk management
  • Other topics

Prof. Frédéric Godin

MAST 729A (MAST 881A)

Institution: Concordia University

Calcul numérique en ingénierie financière

Le but de ce cours est de couvrir les différentes méthodes de calcul numérique utilisées en ingénierie financière. Bien qu'une part théorique soit utile et nécessaire, l'emphase est sur la recherche de solutions pratiques aux problèmes, à travers des routines programmées soi-même ou à travers l'utilisation judicieuse de logiciels. On cherchera toujours une compréhension suffisante de la théorie pour pouvoir appliquer intelligemment les routines existantes, en les adaptant aux besoins d'applications particulières. 
On traitera principalement des domaines de l'optimisation et de la résolution numérique des équations aux dérivées partielles, mais on discutera aussi de la résolution de systèmes d'équations, d'approximation de fonctions et d'intégration numérique.

Prof. Michel Denault

6-609-08

Institution: HEC Montréal

Analysis of Extreme Values with Application to Financial Engineering

Extreme events on financial markets are very difficult to predict and few models are capable of accounting for these characteristics. The theory of extreme values is an important statistical discipline allowing for a more proper modeling of rare events.  In this course, we present the theory of extreme values necessary to solve problems in finance, economics and financial engineering.  The analysis tools required to study such data are also studied.  The proper analysis of extreme values, including methods of estimation, quantification of uncertainty, diagnostics, and maximal utilisation of available data are considered.  We also make extensive use of R, a freely available language and environment for statistical computing and graphics.

Prof. Debbie Dupuis

80-622-10

Institution: HEC Montréal

Calcul stochastique I - automne

Le cours est basé sur l'étude des principaux outils de la théorie de la probabilité qui sont utilisés en finance et en ingénierie financière. Bien que les applications soient liées à ces domaines et que de nombreux exemples seront étudiés en classe et lors des travaux, c'est un cours de mathématiques, ce qui implique la démonstration des résultats. Le principal objectif de ce cours est de rendre l'étudiant à l'aise avec les concepts mathématiques qu'il doit couramment employer en ingénierie financière : processus de diffusion, mesure neutre au risque, la structure de l'information, les martingales, etc.

Le cours est divisé en deux principaux blocs : le premier concernant les modèles à temps discret et le second traitant des modèles à temps continu. Chacune de ces parties est à nouveau subdivisée : une section plus théorique où l'on introduit les concepts mathématiques et une deuxième section dans laquelle ses outils mathématiques sont utilisés.

Prof. Geneviève Gauthier

80-646

Institution: HEC Montréal

Méthodes statistiques en ingénierie financière

La complexité des modèles utilisés en ingénierie financière rend nécessaire l'utilisation de méthodes statistiques avancées. Dès qu'un modèle doit être mis en application, l'un des premiers problèmes rencontrés est l'estimation des paramètres du modèle. Se pose ensuite la question de la précision des estimations et de son influence sur les étapes subséquentes de l'implantation. 

Le cours présente les outils statistiques permettant l'utilisation et l'implantation de modèles dans plusieurs aspects de l'ingénierie financière : évaluation d'options, risque de crédit, réplication de fonds de couverture, etc. Nous couvrirons les méthodes d'estimation (maixmum de vraisemblance, méthode de moments, estimation non-paramétrique, transformation de données), leur précision (intervalles de confiance, information de Fisher, rééchantillonnnage, méthode delta, quantiles), et ce dans le cadre de processus stochastiques couramment utilisés en ingénierie financière (mouvement brownien géométrique, processus avec sauts, modèles à volatilité aléatoire, modèles avec changement de régme, etc.) Nous verrons aussi l'estimation et l'ajustement de modèles de dépendance pour plusieurs facteurs de risque, ainsi que les méthodes de filtrage, permettant d'estimer les paramètres des modèles dont certaines des composantes ne sont pas observables, tel le bénéfice de détention, etc.

Prof. Geneviève Gauthier

80-626-17

Institution: HEC Montréal

Analyse mathématique du risque

Mesures et comparaison des risques, Théorie de la ruine en temps discret et continu, Mouvement brownien et temps de premier passage, Modèles de risque de crédit, Concepts et mesures de dépendance, Copules, Applications des modèles de dépendance en actuariat et en finance.

Prof. Mathieu Boudreault

MAT8600

Institution: Université du Québec à Montréal

Méthodes stochastiques en finance I

Modèles discrets. Stratégies de transaction. Arbitrage. Marchés complets. Évaluation des options. Problème d'arrêt optimal et options américaines. Mouvement brownien. Intégrale stochastique, propriétés. Formule d'Itô. Localisation. Introduction aux équations différentielles sotchastiques. Changement de probabilité et théorème de Girsanov. Représentation des martingales et stratégie de couverture. Modèle de Black et Scholes.

Prof. Clarence Simard

MAT 8601

Institution: Université du Québec à Montréal

Hiver

Mathematical and Computational Finance I

This course focuses on computational aspects, implementation, continuous-time models, and advanced topics in Mathematical and Computational Finance.  We shall attempt to cover the following topics: stochastic calculus, Black-Scholes model, option pricing, Monte-Carlo methods, finite difference methods, volatility models, American options, exotic options, hedging, risk measurement and interest rate models.

Prof. Cody Hyndman

MAST 729-F, MAST 881-F

Institution: Concordia University

Stochastic Calculus I

This course covers the main tools of probability theory that are used in finance and financial engineering.  Besides the theoretical concepts and proofs, many applications in finance are presented rigorously.  The first half of the course is in discrete time, while the second half is about continuous time models.  For each of these two parts, there is a theoretical component in which the basic concepts such as martingales, stochastic integrals and diffusion processes are introduced and a more applied segment where the mathematical tools are applied to financial problems.

Prof.

80-646-16A

Institution: HEC Montréal

Simulation Monte Carlo

La simulation de Monte Carlo est une technique numérique largement utilisée permettant de solutionner des problèmes généralement trop complexes pour qu'une solution analytique soit disponible. En ingénierie financière, elle est utilisée comme outil pour tarifer des produits dérivés, évaluer la distribution de la valeur d'un portefeuille comportant divers instruments, calculer des mesures de risque, etc. 

Dans ce cours, nous aborderons les fondements mathématiques de cette méthode et nous l'appliquerons à des problèmes d'ingénierie financière. Comme certains problèmes sont complexes et nécessitent un effort de programmation important, certains cours seront substitués à des périodes en laboratoire où les étudiants pourront mettre en oeuvre la théorie vue en classe.

Le langage de programmation utilisé est Matlab.

Prof.

6-601-09

Institution: HEC Montréal

Statistique en actuariat

Ce cours vise à permettre à l'étudiant de:

  •  Savoir analyser l'impact des facteurs exogènes et endogènes sur les risques par des modèles de prévision avancés;
  •  Utiliser les outils statistiques afin de segmenter les risques en assurance;
  •  Calculer la prime d'assurance a priori et a posteriori;
  •  Utiliser les outils informatiques avancés en actuariat (SAS, R, MATLAB, C++).  

Ce cours vise à introduire les notions de segmentation des risques de la tarification en assurance, en utilisant divers outils statistiques. Les modèles de prévision pour le nombre et le coût des réclamations seront abordés afin d'inclure les caractéristiques du risque dans le calcul de la prime. La notion d'hétérogénéité en assurance et sa modélisation mathématique seront abordées, de même que les modèles hiérarchiques ou données longitudinales en assurance et en finance.

Prof.

MAT8594-10

Institution: Université du Québec à Montréal

Mathématiques appliquées et calcul scientifique

Automne

Numerical Analysis 1

Development, analysis and effective use of numerical methods to solve problems arising in applications. Topics include direct and iterative methods for the solution of linear equations (including preconditioning), eigenvalue problems, interpolation, approximation, quadrature, solution of nonlinear systems.

Prof. Adam Oberman

MATH 578

Institution: Université McGill

Partial Differential Equations 1

The main focus of the course is going to be on linear first and second order equations, and Sobolev spaces. Rather than trying to build everything in full generality, we will study prototypical examples in detail to establish good intuition. Roughly speaking, most of the topics from the calendar description of Math 580 and some from that of Math 581 will be covered. More precisely, the planned topics are

• First order equations, method of characteristics

• Cauchy problem for heat and wave equations

• Duhamel's, Huygens, and maximum principles

• Green's identities, harmonic functions, Harnack inequality

• Fundamental solution, Green's function, Poisson's formula

• Dirichlet problem: Perron's method, barriers, boundary regularity

• Sobolev spaces, weak and strong derivatives, Dirichlet principle

• Poisson equations: Variational formulation, boundary conditions

• Elliptic regularity, Sobolev embedding

• Laplace eigenvalues and eigenfunctions (if time permits)

Prof. Gantumur Tsogtgerel

MATH 580

Institution: Université McGill

Topics in Applied Mathematics: Delay Differential Equations

Many physical processes are modelled by differential equations which involve delays. This course will provide an introduction to delay differential equations (DDEs) concentrating on the key tools needed to understand the behaviour of these equations, and also some of numerical techniques used to approximate solutions. Throughout we will emphasise the similarities and differences between DDEs and ordinary differential equations (ODEs).

Topics covered will include: DDEs as infinite dimensional dynamical systems, breaking points and smoothing of DDE solutions, continuous Runge-Kutta methods for ODEs and DDEs, linear stability of steady states, bifurcation theory. A selection of more advanced topics will also be covered. The choice of topics will depend on time and the preferences of the participants, but may include state-dependent delays, distributed delays, numerical continuation and bifurcation techniques.

Prof. Tony Humphries

MATH 597

Institution: Université McGill

Topics in Applied Mathematics: Convex Optimisation

Prof. Tim Hoheisel

MATH 597

Institution: Université McGill

Hiver

Reinforcement Learning

This course focuses on solving Markov Decision Problems (MDP) using methods of dynamic programming and reinforcement learning. Solution approaches to finite and infinite horizon MDP through the Bellman Equation, value function iteration and policy iteration are presented. Approximate dynamic programming ideas are then introduced to increase computational speed. Methods of reinforcement learning such as temporal-difference learning, online versus offline control and eligibility traces are then illustrated. Students will have to code extensively in R throughout the course.

Prof. Frédéric Godin

MAST 679-H, MAST 881-H

Institution: Concordia University

Algorithms for Optimization and Big Data Analysis

Algorithmic methods for big data analysis. Complexity analysis, data structure, parallel and distributed computing.

The course is organized in 4 themes that will cover various aspects of algorithmic for big data, starting from sequential programming and ending with distributed computing. In the first part of the course, the student will learn to analyze an algorithm from the computational complexity and memory requirement. The second theme in the course deals with parallel computing with shared memory. The efficiency of the parallelization and memory safety will be discussed and analysed. In the third theme, the message passing interface (MPI) will be explored, which consists in simultaneous and collaborative parallel computing without shared memory. Finally, the basics of distributed computing, its strength and requirements will be introduced. The choice of the best approach toward the resolution of a problem will depend on the problem and the nature of the data.

Prof.

6-607-18A

Institution: HEC Montréal

Numerical Differential Equations

Numerical solution of initial and boundary value problems in science and engineering: ordinary differential equations; partial differential equations of elliptic, parabolic and hyperbolic type. Topics include Runge Kutta and linear multistep methods, adaptivity, finite elements, finite differences, finite volumes, spectral methods.

Prof. Adam Oberman

MATH 579

Institution: Université McGill

Fluid Dynamics

Kinematics. Dynamics of general fluids. Inviscid fluids, Navier-Stokes equations. Exact solutions of Navier-Stokes equations. Low and high Reynolds number flow.

Prof. Pater Bartello

MATH 555

Institution: Université McGill

Partial Differential Equations 2

The main focus of the course is going to be on nonlinear problems. Sobolev spaces, the Fourier transform, and functional analytic methods will be heavily used. The planned topics are

• Tempered distributions, convolution, Fourier transform

• Fourier analytic treatment of Sobolev spaces

• Problems in half-space, shades of hyperbolicity, parabolicity, and ellipticity

• Overview of elliptic theory, regularity

• Semilinear elliptic equations, monotonicity methods

• Variational problems, compactness methods

• Semilinear evolution equations, Duhamel's principle

• The Navier-Stokes equations and related turbulence models

• Semilinear elliptic problems with critical exponents (if time permits)

Prof. Gantumur Tsogtgerel

MATH 581

Institution: Université McGill

Calcul scientifique

Étude des algorithmes fondamentaux en calcul scientifique. Principes théoriques; programmation et application à des problèmes pratiques; utilisation scientifique de logiciels spécialisés.

Prof. Robert G. Owens

MAT 6470

Institution: Université de Montréal

Physique mathématique

Automne

Généralisations de l’analyse complexe et leurs applications

Les thèmes principaux qui seront étudiés dans ce cours sont les quaternions, les algèbres de Clifford ainsi que la théorie des fonctions analytiques généralisées (fonctions pseudo-analytiques). Ces structures seront également utilisées pour considérer certaines applications, principalement en physique quantique. Pour toutes ces structures, nous allons porter une attention particulière aux généralisations des fonctions analytiques complexes. Dans le cas des quaternions et des algèbres de Clifford, les propriétés algébriques ainsi que géométriques seront considérées. La théorie des fonctions pseudo-analytiques généralise et préserve plusieurs caractéristiques de la théorie des fonctions analytiques complexes. Le système de Cauchy-Riemann est alors substitué par un système plus général, appelé équations de Vekua, qui apparaît dans plusieurs problèmes de la physique mathématique.

Prof. Sébastien Tremblay

UQTR MAP6021-00

Institution: Université du Québec à Trois-Rivières

Équations aux dérivées partielles (UQTR)

Ce cours s’adresse aux étudiants à la maîtrise et au doctorat. Il contient les conceptes de base des développements de la théorie de la résolution des systèmes d’équations aux dérivées partielles (EDP). Le contenu du cours est le suivant.
Équation aux dérivées partielles du premier ordre résolue par la méthode de Monge, Probème de Cauchy, Solution générée par enveloppes, Probème initial mal posé, Bifurcation, Intégrale compète et crochet de Jacobi, Équation de type Hamilton-Jacobi, Équation aux dérivées partielles du deuxème ordre, Méthodes de construction de solutions classiques fondamentales des EDP, Preuves des théoèmes d’existence et d’unicité, Preuve de la dépendance continue des solutions classiques par rapport aux conditions initiales, Preuve de l’exactitude et de la resolvabilité du probème de Cauchy, Méthodes analytique de construction de solutions des sysèmes d’EDP en plusieures dimensions, Conditions pour la formation de discontinuités dans les solutions des sysèmes quasilinéaires d’EDP, Applications à la mécanique continue.

Prof. Michel Grundland

MAP-6019-00

Institution: Université du Québec à Trois-Rivières

Hiver

Topics in Geometry and Topology : Introduction to mathematical treatment of Einstein's general relativity theory

If you have taken or are taking the physics GR course, the two courses should complement each other nicely. In particular, there will not be much overlap. While a considerable part of the physics course is (probably) spent on introducing differential geometry, we will assume that the students are comfortable with basic differential geometry. Exact solutions with high degree of symmetry will be studied as prototypical examples of spacetimes, but our focus will be on the properties of realistic spacetimes with no or very little symmetry.

 The following topics will be treated.

• Some exact solutions, including black hole and cosmological solutions.

• Lorentzian geometry, geodesic congruences, variational characterization of geodesics.

• Singularity theorems of Penrose and Hawking. These theorems are the highlight of the course, and basically show that spacetimes cannot avoid developing singularities.

• Cauchy problem, if time permits. This result says that the state of the universe "today" completely determines what happens in the future in a certain sense.

 The grading will be based on a few homework, and a course project, where the student studies a special topic and gives a presentation.

Prof. Gantumur Tsogtgerel

MATH 599

Institution: Université McGill

Surfaces de Riemann

Ce cours est une introduction à la théorie des surfaces de Riemann. Le préalable exigé est une connaissance de base de l'analyse complexe.

 Contenu:

Surfaces de Riemann compactes. Structures complexes engendrées par une métrique. Applications holomorphes. Revêtements ramifiés de la sphère de Riemann, formule de Riemann-Hurwitz. Topologie et formes différentielles sur les surfaces de Riemann. Différentielles abéliennes, Jacobien. Fonctions méromorphes sur les surfaces de Riemann compactes. Théorème d'Abel. Théorème de Riemann-Roch. Fonctions théta, fonctions de Weierstrass. Aperçu des courbes algébriques.

Prof. Vasilisa Shramchenko

MAT 737

Institution: Université de Sherbrooke

Probabilités

Automne

Advanced Probability Theory 1

Probability spaces. Random variables and their expectations. Convergence of random variables in Lp. Independence and conditional expectation. Introduction to Martingales. Limit theorems including Kolmogorov's Strong Law of Large Numbers.

Prof. Linan Chen

MATH 587

Institution: Université McGill

Hiver

Advanced Probability 2

Characteristic functions: Elementary properties, Inversion formula, Uniqueness, convolution and continuity theorems. 

Weak convergence: Portmanteau theorem, Sequential compactness, tightness, Prohorov's theorem, Polish spaces, Central limit theorem, Skorokhod's representation theorem.

Stochastic processes: General theory. Kolmogorov Extension theorem, Kolmogorov continuity theorem. Regular probability spaces and conditional distributions, probability kernels.  Construction of Brownian motion, Donsker's theorem

Exchangeability: De Finetti's theorem,  The Aldous-Hoover theorem. 

Other topics if time permits. 

Prof. Louigi Addario-Berry

MATH 589

Institution: Université McGill

Statistique

Automne

Statistical Consulting and Data Analysis

Prof. L. Kakinami

MAST 678

Institution: Concordia University

Techniques d'exploitation de données (data mining)

Ce cours présente certaines des principales techniques d'analyse de grandes bases de données (data mining). Les technologies de l'intelligence d'affaires permettent aux entreprises, entre autres, d'analyser les données recueillies pour leurs opérations afin de mieux comprendre le comportement de leurs clients dans le but d'aider à anticiper la demande, accroître la rétention ou réduire la fraude. Différentes techniques de l'intelligence d'affaires, parmi les plus utilisées en pratique, seront donc présentées et illustrées à partir d'exemples concrets dans différents domaines de gestion.

Prof. François Bellavance & Yves Leblond

6-600-09

Institution: HEC Montréal

Data-mining Techniques

This course introduces the main data mining and machine learning methods used in practice for the analysis of big data.

This course introduces the major data mining techniques used to analyze big data. Business intelligence technologies enable companies to analyze the large amount of data collected for their operations to, for example, better understand customer behavior in order to help anticipate demand or increase retention, reduce fraud, optimize preventive maintenance, etc.. Different data mining techniques, among the most widely used in practice, will therefore be presented and illustrated based on concrete examples in different management domains.

Prof. Jian Tang

6-600-18A

Institution: HEC Montréal

Analyse multidimensionnelle appliquée

Les entreprises croulent littéralement sous le poids des données qu'elles ont à leur disposition. Ces données contiennent potentiellement une quantité importante d'informations pouvant être bénéfiques à l'entreprise si utilisées correctement. Sous le vocable « data mining », on retrouve différentes techniques statistiques utilisées pour explorer et analyser de grands ensembles de données. Ces techniques ont généralement pour but de développer des modèles prévisionnels, de réduire la taille des données, de faire de la segmentation ou bien de découvrir des associations pertinentes. L'analyse multidimensionnelle est à la base de plusieurs techniques de data mining et est utilisée dans plusieurs domaines de gestion dont le marketing. 

Le but du cours analyse multidimensionnelle est de donner aux étudiants(e)s une formation de base en traitement de données multidimensionnelles. Plusieurs techniques statistiques seront présentées et on insistera surtout sur la compréhension intuitive, l'interprétation correcte et l'utilisation pratique de celles-ci. Par conséquent, l'emploi de concepts mathématiques sera réduit à son minimum et ces derniers ne serviront qu'à faciliter la compréhension des méthodes étudiées. Le logiciel SAS sera utilisé mais aucune connaissance préalable de celui-ci n'est requise. Par contre, une connaissance des concepts et méthodes statistiques (population, échantillon, estimation, test d'hypothèse) de base est requise.

Prof. Laurent Charlin & Julie Meloche

6-602-07

Institution: HEC Montréal

Logiciels statistiques

L'étudiant apprendra à programmer en SAS et en R afin de nettoyer des jeux de données, de les représenter graphiquement et d'en faire une analyse statistique complexe. En plus de maîtriser le code de base de SAS, l'étudiant apprendra la syntaxe du module ODS qui permet de gérer le contenu des sorties. Il apprendra aussi le langage macro de SAS et s'en servira . afin de créer des fonctions permettant des analyses statistiques supplémentaires. En R, l'étudiant apprendra les bases du langage qui lui serviront à faire une analyse statistique des données .. II ·apprendra aussi à écrire des fonctions permettant l'analyse statistique de données et à construire une librairie de fonctions afin de partager les outils d'analyse qu'il aura codés. R et SAS sont basés sur des langages de programmation différents que l'étudiant devra apprendre à maîtriser.

Prof. Sarah Legendre Bilodeau

6-613-11

Institution: HEC Montréal

Analyse et inférence statistique

L'objectif principal du cours est de fournir à l'étudiant les notions fondamentales de l’analyse et de l’inférence statistique ainsi que les méthodes statistiques avancées. En plus des concepts théoriques, ce cours mettra particulièrement l'accent sur les applications pratiques de ces méthodes dans des contextes de recherche.

Prof. Aurélie Labbe

6-619-15

Institution: HEC Montréal

Analyse de données textuelles et de réseaux sociaux

L'étudiant découvrira les méthodes qui permettent d'analyser automatiquement un corpus de documents par des algorithmes classiques d'exploitation de données. Les textes étant avant tout destinés à la lecture par des humains, l'information qu'ils recèlent n'est pas structurée de manière appropriée à un traitement automatisé. Nous présenterons dans ce cours diverses techniques spécifiques grâce auxquelles un traitement automatisé des documents est possible.

Après avoir suivi ce cours, l'étudiant saura identifier les paramètres appropriés et utiliser de manière appropriée les principaux logiciels disponibles. Le cours est composé de 6 séances de 3 heures durant lesquelles les techniques sont présentées formellement d'abord, puis par l'entremise d'applications.

Prof. Gilles Caporossi

6-621-15

Institution: HEC Montréal

Analyse de données longitudinales et de survie

Le but du cours est de fournir aux étudiants les outils nécessaires à l'analyse de données longitudinales et de survie. Contrairement aux études transversales, la caractéristique principale de ces études est que les sujets sont suivis à travers le temps. Ceci permet d'étudier directement la façon dont évoluent les phénomènes à travers le temps. Par contre, ce type de données engendre aussi des difficultés supplémentaires comme de la dépendance entre les observations d'un même sujet ou la présence de censure. Le cours sera axé sur la compréhension des concepts ainsi que sur l'aspect pratique afin de rendre l'étudiant capable de procéder à l'analyse de données longitudinales et de survie. L'apprentissage se fera à l'aide d'exemples concrets provenant de plusieurs domaines de la gestion.

Prof. Denis Larocque

80-621-07

Institution: HEC Montréal

Analysis of Extreme Values with Application to Financial Engineering

Extreme events on financial markets are very difficult to predict and few models are capable of accounting for these characteristics. The theory of extreme values is an important statistical discipline allowing for a more proper modeling of rare events.  In this course, we present the theory of extreme values necessary to solve problems in finance, economics and financial engineering.  The analysis tools required to study such data are also studied.  The proper analysis of extreme values, including methods of estimation, quantification of uncertainty, diagnostics, and maximal utilisation of available data are considered.  We also make extensive use of R, a freely available language and environment for statistical computing and graphics.

Prof. Debbie Dupuis

80-622-10

Institution: HEC Montréal

Machine Learning for Large-Scale Data Analysis and Decision Making

In this course, we will study machine learning models, a type of statistical analysis that focuses on prediction, for analyzing very large datasets ("big data"). In addition to standard models, we will study models for analyzing user behaviour and for decision making. Massive datasets are now common and require scalable analysis tools.  Machine learning provides such tools and is widely used for modelling problems across many fields including artificial intelligence, bioinformatics, finance, marketing, education, transportation, and health.

In this context, we study how standard machine learning models for supervised (classification, regression) and unsupervised learning (for example, clustering and topic modelling) can be scaled to massive datasets using modern computation techniques (for example, computer clusters). In addition, we will discuss recent models for recommender systems as well as for decision making (including multi-arm bandits and reinforcement learning).

Through a course project students will have the opportunity to gain practical experience with the analysis of datasets from their field(s) of interest. A certain level of familiarity with computer programming will be expected.

Prof. Laurent Charlin

80-629-17A

Institution: HEC Montréal

Experimental Designs and Statistical Methods for Quantitative Research in Management

This course has four main objectives: 1) to present the major experimental designs used for research in management and in the behavioral sciences; 2) to familiarize students with the statistical methods and software (e.g. PASW, formerly SPSS) used to analyze experimental data; 3) to interpret and present results from the statistical analyses and discuss the validity and limits of the methods; 4) to understand and to critic the methodology and statistical results of published articles in the research fields of the students.

Prof. François Bellavance

80-667-09

Institution: HEC Montréal

Nonparametric Statistics

Distribution free procedures for 2-sample problem: Wilcoxon rank sum, Siegel-Tukey, Smirnov tests. Shift model: power and estimation. Single sample procedures: Sign, Wilcoxon signed rank tests. Nonparametric ANOVA: Kruskal-Wallis, Friedman tests. Association: Spearman's rank correlation, Kendall's tau. Goodness of fit: Pearson's chi-square, likelihood ratio, Kolmogorov-Smirnov tests. Statistical software packages used.

Prof. Christian Genest

MATH 524

Institution: Université McGill

Mathematical Statistics I

Distribution theory, stochastic models and multivariate transformations. Families of distributions including location-scale families, exponential families, convolution families, exponential dispersion models and hierarchical models. Concentration inequalities. Characteristic functions. Convergence in probability, almost surely, in Lp and in distribution. Laws of large numbers and Central Limit Theorem. Stochastic simulation.

Prof. Masoud Asgharian-Dastenaei

MATH 556

Institution: Université McGill

Topics in Probability and Statistics: Some fundamental notions in statistics

Overview: The purpose of this course is to (re)visit some of the main ideas of statistics which students might have seen, perhaps fleetingly, in previous courses. The emphasis will be on understanding rather than on breadth. Students will be assigned papers to read that convey these ideas and instruction will be through in-class student presentations and discussion. Most of the papers will be selected from those that are considered to be the historical “breakthrough papers.”

The topics to be covered, time permitting

1. Tests of hypotheses, with emphasis on the meaning of a (frequentist) p-value and the approach taken by Bayesians, as well as attempts to reconcile these two viewpoints.

Book Chapter by M.J.Bayarri and J.O.Berger: “Hypothesis Testing and Model Uncertainty.”

2. The origins Markov Chain Monte Carlo methods.

Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. (1953). “Equations of State Calculations by Fast Computing Machines.” Journal of Chemical Physics.

Hastings, W.K. (1970). "Monte Carlo Sampling Methods Using Markov Chains and Their Applications". Biometrika.

3. The origins of empirical Bayesian methods.

H.E. Robbins. “(1955). “An Empirical Bayes Approach to Statistics.” Third Berk. Symp. Statist. Prob.

4. The origins of the bootstrap.
Efron. B. (1979). “Bootstrap methods: another look at the jackknife.” Ann. Statist.,

5. The origins of generalized estimating equations (GEEs).
Liang, K.E. and Zeger, S.L. (1986). “Longitudinal Data Analysis using Generalized Linear Models.”

Prerequisites

The minimum prerequisites are MATH 556 and MATH 557 (Distribution theory and statistical inference) or equivalent, and a course in regression analysis. Naturally, the more exposure that one has had to different areas of statistics the easier the papers will be to read.

Comments

1. Often, at the first, second or third reading of a paper it appears to be opaque. Then, (hopefully) it begins to reveal its secrets.

2. Students will be seriously evaluated on their ability to clearly present the contents of the paper(s) for which they are mainly responsible: Evaluation will be based on in-class presentations and short written summaries. Novel explanations will be rewarded.

3. Some of these papers are long. The technical details are not always crucial to the thrust of the paper and may be omitted as long the reader can describe in broad terms, what they are.

The idea is for students to have fun and derive satisfaction from being able to brag that they have read “the original paper on.......” by “....”

Prof. David Wolfson

MATH 598

Institution: Université McGill

Computation Intensive Statistics

General introduction to computational methods in statistics; optimization methods; EM algorithm; random number generation and simulations; bootstrap, jackknife, cross-validation, resampling and permutation; Monte Carlo methods: Markov chain Monte Carlo and sequential Monte Carlo; computation in the R language.

Prof. Yi Yang

MATH 680

Institution: Université McGill

Analyse statistique multivariée

Étude des distributions échantillonnales classiques: T2 de Hotelling; loi de Wishart; distribution des valeurs et des vecteurs propres; distribution des coefficients de corrélation. Analyse de variance multivariée. Test d'indépendance de plusieurs sous-vecteurs. Test de l'égalité de matrices de covariance. Sujets spéciaux.

Prof. Karim Oualkacha

MAT8081

Institution: Université du Québec à Montréal

Modèles de régression

Théorie des modèles linéaires généraux. Théorie des modèles linéaires généralisés. Régression logistique. Modèles log-linéaires.

Prof. Jean-François Coeurjolly

MAT7381

Institution: Université du Québec à Montréal

Méthodes avancées d'inférence

Principes d'inférence; estimation ponctuelle et distribution des estimateurs, approximation normale, point de selle et « bootstrap »; tests d'hypothèses; robustesse, inférence bayésienne, pseudo- et quasi vraisemblance, estimation non paramétrique.

Prof. François Perron

STT 6100

Institution: Université de Montréal

Analyse de la variance

Rappels et compléments sur la théorie du modèle linéaire : moindres carrés, théorèmes de Gauss-Markov et de Cochran, inférence. Modèle à effets fixes et aléatoires. Plan incomplet. Plan à mesures répétées.

Prof. Martin Bilodeau

STT 6410

Institution: Université de Montréal

Régression

Rappels sur la régression linéaire multiple. Diagnostics. Transformations, moindres carrés pondérés, méthodes robustes, régression « ridge ». Régression non linéaire. Modèles spécifiques: logistique, probit, de Poisson.

Prof. Maire

STT 6415

Institution: Université de Montréal

Hiver

Techniques d'exploitation de données (data mining)

Ce cours présente certaines des principales techniques d'analyse de grandes bases de données (data mining). Les technologies de l'intelligence d'affaires permettent aux entreprises, entre autres, d'analyser les données recueillies pour leurs opérations afin de mieux comprendre le comportement de leurs clients dans le but d'aider à anticiper la demande, accroître la rétention ou réduire la fraude. Différentes techniques de l'intelligence d'affaires, parmi les plus utilisées en pratique, seront donc présentées et illustrées à partir d'exemples concrets dans différents domaines de gestion.

Prof. François Bellavance & Yves Leblond

6-600-09

Institution: HEC Montréal

Analyse multidimensionnelle appliquée

Les entreprises croulent littéralement sous le poids des données qu'elles ont à leur disposition. Ces données contiennent potentiellement une quantité importante d'informations pouvant être bénéfiques à l'entreprise si utilisées correctement. Sous le vocable « data mining », on retrouve différentes techniques statistiques utilisées pour explorer et analyser de grands ensembles de données. Ces techniques ont généralement pour but de développer des modèles prévisionnels, de réduire la taille des données, de faire de la segmentation ou bien de découvrir des associations pertinentes. L'analyse multidimensionnelle est à la base de plusieurs techniques de data mining et est utilisée dans plusieurs domaines de gestion dont le marketing. 

Le but du cours analyse multidimensionnelle est de donner aux étudiants(e)s une formation de base en traitement de données multidimensionnelles. Plusieurs techniques statistiques seront présentées et on insistera surtout sur la compréhension intuitive, l'interprétation correcte et l'utilisation pratique de celles-ci. Par conséquent, l'emploi de concepts mathématiques sera réduit à son minimum et ces derniers ne serviront qu'à faciliter la compréhension des méthodes étudiées. Le logiciel SAS sera utilisé mais aucune connaissance préalable de celui-ci n'est requise. Par contre, une connaissance des concepts et méthodes statistiques (population, échantillon, estimation, test d'hypothèse) de base est requise.

Prof. Laurent Charlin & Julie Meloche

6-602-07

Institution: HEC Montréal

Logiciels statistiques

L'étudiant apprendra à programmer en SAS et en R afin de nettoyer des jeux de données, de les représenter graphiquement et d'en faire une analyse statistique complexe. En plus de maîtriser le code de base de SAS, l'étudiant apprendra la syntaxe du module ODS qui permet de gérer le contenu des sorties. Il apprendra aussi le langage macro de SAS et s'en servira . afin de créer des fonctions permettant des analyses statistiques supplémentaires. En R, l'étudiant apprendra les bases du langage qui lui serviront à faire une analyse statistique des données .. II ·apprendra aussi à écrire des fonctions permettant l'analyse statistique de données et à construire une librairie de fonctions afin de partager les outils d'analyse qu'il aura codés. R et SAS sont basés sur des langages de programmation différents que l'étudiant devra apprendre à maîtriser.

Prof. Sarah Legendre Bilodeau

6-613-11

Institution: HEC Montréal

Analyse et inférence statistique

L'objectif principal du cours est de fournir à l'étudiant les notions fondamentales de l’analyse et de l’inférence statistique ainsi que les méthodes statistiques avancées. En plus des concepts théoriques, ce cours mettra particulièrement l'accent sur les applications pratiques de ces méthodes dans des contextes de recherche.

Prof. Aurélie Labbe

6-619-15

Institution: HEC Montréal

Time Series and Forecasting

This course introduces classical time series concepts: trend and seasonal pattern identification, stationarity, autocorrelation and partial autocorrelation, ARMA processes, estimation and prediction, model diagnostics and possibly GARCH and regime-switching models.

Prof. Frédéric Godin

MAST 677-J, MAST 881-J

Institution: Concordia University

Statistical Analysis and Inference

The goal of this course is to provide basic notions of statistical analysis and inference as well as advanced statistical methods. In addition to the theoretical concepts, this course will focus on the practical applications of these methods.

Thèmes couverts

1) SAS software

2) ANOVA, t-tests

3) Linear models

4) Generalized linear models

5) Likelihood methods

6) Correlated data analysis

7) Non-parametric methods

Prof.

6-619-18A

Institution: HEC Montréal

Méthodes de prévision

Présentation des principales méthodes propres à la prévision nécessaire à la prise de décisions en présence l'incertitude. Grands principes des méthodes de prévision utilisées.

Les étudiants se familiariseront avec l'utilisation des principales techniques telles le lissage, la régression, les séries chronologiques et les réseaux de neurones. Les méthodes d'évaluation et de sélection de modèles, ainsi que les méthodes d'évaluation des erreurs de prévision, sont aussi au programme. Le logiciel R sera utilisé.

Prof.

6-638-16

Institution: HEC Montréal

Forecasting Methods

Presentation of the main forecasting methods necessary for decision making in the presence of uncertainty. General principles of forecasting methods used are outlined.

Students will become familiar with the use of key techniques such as smoothing, regression, time series and neural networks. Methods for model evaluation and selection, as well as methods for estimating forecast errors, are also on the program. The R software will be used.

Prof.

6-638-18A

Institution: HEC Montréal

Latent Variable Analysis with Applications in Administrative Sciences

Structural equation models and latent variables is a field of data analytics that has undergone substantial developments over the past two decades. These models allow to characterize and relate some factors that are not directly observable. The range of application of such models is very wide in social sciences, including marketing, management, IT and human resources. The course will be divided into several parts, including a review of the concepts of regression, correlation, causal relation, direct / indirect effects and correlation diagrams. We will then discuss some specific types of structural equation models such as exploratory/confirmatory factor analysis and we will study the general formulation of the model, characterized by a path diagram with latent variables. Finally, component-based structural equation models will also be discussed, such as partial least squares (PLS) and GSCA.

All the analyses seen in this course will be carried out using specialized software. For each type of model studied, we will focus on model identification and specification, parameter inference, model fit and interpretation of results through applied examples in administrative sciences.

Prof.

80-628-17A

Institution: HEC Montréal

Théorie de l'échantillonnage

Sondages avec probabilités inégales, stratifiés, en grappes, à plusieurs degrés. Estimation par le quotient et la régression, optimalité. Coûts; non-réponse; population de référence et population-mère; inférence bayésienne.

Prof. David Haziza

STT 6005

Institution: Université de Montréal

Topics in Probability and Statistics : Extreme Value Theory

The course will complement the course 80-622 Analysis of extreme values with application to financial engineering that Debbie Dupuis will be teaching at HEC in the Fall 2018.  

 

Prof. Johanna Neslehova

MATH 598

Institution: Université McGill

Advanced Topics in Statistics 2 : Machine Learning

Prof. Yi Yang

MATH 783

Institution: Université McGill