Géométrie et topologie

Description du programme

La géométrie différentielle et la topologie sont des disciplines fondamentales des mathématiques dont la richesse et la vitalité à travers l’histoire reflètent leur lien profond avec notre appréhension de l’univers. Elles forment un des carrefours névralgiques des mathématiques modernes. En effet, le développement récent de plusieurs domaines des mathématiques doit beaucoup à la géométrisation des idées et des méthodes; en particulier, c’est le cas pour la physique mathématique et la théorie des nombres.

Dans ce sujet assez large, les domaines de recherche principaux du groupe sont : la classification topologique des variétés en dimension 3, la quantification des systèmes de Hitchin et le programme de Langlands géométrique, la classification des métriques kählériennes spéciales, l’étude des invariants symplectiques (particulièrement en dimension 4), les équations aux dérivées partielles non linéaires en géométrie riemannienne, en géométrie convexe et en relativité générale, et les systèmes dynamiques hamiltoniens.

La plupart des chercheurs du groupe font partie du  CIRGET, le Centre interuniversitaire de recherche en géométrie différentielle et topologie. Le centre organise des événements scientifiques ainsi que plusieurs séminaires hebdomadaires.

Membres du programme

Formation

Les coordonnateurs du programme envisagent trois niveaux de cours dans le cheminement de l'étudiant:

  1. Le premier niveau (les cours d'introduction ne relèvent pas de l'ISM) est constitué de deux cours d'introduction à la géométrie et à la topologie, à être augmentés de cours d'analyse et d'algèbre. Ces cours d'introduction seront donnés à chaque année, dans au moins une des universités participantes.
  2. Le deuxième niveau devrait initier l'étudiant aux domaines principaux du sujet et lui donner une certaine culture de base, par exemple en groupes de Lie, géométrie algébrique, géométrie riemannienne, topologie de basse dimension, et analyse des équations aux dérivées partielles. Ces cours se donneront une fois tous les deux ans environ.
  3. Le troisième niveau est constitué de cours plus spécialisés. En plus, tous les étudiants du programme devraient normalement participer au séminaire de géométrie et de topologie.

Cours 2018-19

Automne

Geometry and Topology I

Basic point-set topology, including connectedness, compactness, product spaces, separation axioms, metric spaces. The fundamental group and covering spaces. Simplicial complexes. Singular and simplicial homology. Part of the material of MATH 577 may be covered as well.

Prof. Daniel T. Wise

MATH 576

Institution: Université McGill

Topics in Differential Geometry

In this course I plan to cover some basic material of Kähler geometry, roughly in line with the first chapter of the book of Griffiths and Harris, or Claire Voisin’s book on Hodge theory and Complex algebraic geometry (book 1).

 Material should include:

 -Rudiments of function theory of several complex variables,

-Complex manifolds, de Rham and Dolbeault cohomology,

- Sheaf theory and cohomology theory,

-Kähler metrics, connections and curvature,

-Harmonic theory: the Hodge theorem and the  Hodge decomposition,

-The Lefschetz decomposition.

 Closing, if time allows, with some material on periods and Hodge structures, or maybe on Hyperkähler manifolds.

Prof. Jacques Hurtubise

MATH 599

Institution: Université McGill

Géométrie différentielle - UdeM

Rappels de topologie et d’algèbre tensorielle. Variétés différentiables, espaces tangents, différentielle des fonctions, partitions de l’unité, tenseurs et formes différentielles, champs de vecteurs, théorème fondamental des EDO et dérivée de Lie. Intégration et théorème de Stokes, théorème de Fröbenius sur les distributions, cohomologie et théorème de DeRham. Métriques riemanniennes, connexions, dérivée covariante, géodésiques et courbure. 

Prof. François Lalonde

MAT6381V

Institution: Université de Montréal

Groupes ordonnables et la topologie de basse dimension

Dans ce cours nous développerons les éléments de base de la théorie des groupes ordonnables et leur applications à la topologie de basse dimension. En particulier, nous discuterons de la conjecture de L-espace qui prétend l'équivalence entre l'ordonnabilité du groupe fondamentale d'une 3-variété et de certaines de ses propriétés topologique et analytique.

Prof. Steven Boyer

MAT 993X

Institution: Université du Québec à Montréal

Hiver

Geometry and Topology 2

1. Differentiable manifolds:
Differentiable manifolds, tangent and cotangent spaces, smooth maps, submanifolds, tangent and cotangent bundles, implicit function theorem, partition of unity. Examples include real projective spaces, real Grassmannians and some classical matrix Lie groups.
2. Differential forms and de Rham cohomology:
Review of exterior algebra, the exterior differential and the definition of de Rham cohomology. The Poincaré Lemma and the homotopy invariance of de Rham cohomology. The Mayer-Vietoris sequence, computation of de Rham cohomology for spheres and real projective spaces. Finite-dimensionality results for manifolds with good covers, the Kunneth formula and the cohomology of tori. Integration of differential forms and Poincare duality on compact orientable manifolds.
3. An introduction to Riemannian geometry:
Existence of Riemannian metrics, isometric immersions, parallel transport and the Levi-Civita connection, the fundamental theorem of Riemannian geometry, Riemannian curvature. Geodesics, normal coordinates, geodesic completeness and the Hopf-Rinow Theorem.

Textbooks:

W. Boothby, An introduction to differentiable manifolds and Riemannian geometry, Academic Press.
R. Bott and L. Tu, Differential forms in algebraic topology, Springer.

Prof. Niky Kamran

MATH 577

Institution: Université McGill

Algebraic Topology

Textbook: Allen Hatcher, Algebraic Topology.

 Syllabus: CW-complexes, cellular approximation theorem. Homotopy groups, long exact sequence for a fiber bundle. Whitehead theorem. Freudenthal suspension theorem. Singular and cellular homology and cohomology. Hurewicz theorem. Mayer-Vietoris sequence. Universal coefficients theorem. Cup product, Kunneth formula, Poincare duality.

 Prerequisites: MATH 576 or equivalent or permission of instructor.

Prof. Piotr Przytycki

MATH 582

Institution: Université McGill

Topics in Geometry and Topology : Introduction to mathematical treatment of Einstein's general relativity theory

If you have taken or are taking the physics GR course, the two courses should complement each other nicely. In particular, there will not be much overlap. While a considerable part of the physics course is (probably) spent on introducing differential geometry, we will assume that the students are comfortable with basic differential geometry. Exact solutions with high degree of symmetry will be studied as prototypical examples of spacetimes, but our focus will be on the properties of realistic spacetimes with no or very little symmetry.

 The following topics will be treated.

• Some exact solutions, including black hole and cosmological solutions.

• Lorentzian geometry, geodesic congruences, variational characterization of geodesics.

• Singularity theorems of Penrose and Hawking. These theorems are the highlight of the course, and basically show that spacetimes cannot avoid developing singularities.

• Cauchy problem, if time permits. This result says that the state of the universe "today" completely determines what happens in the future in a certain sense.

 The grading will be based on a few homework, and a course project, where the student studies a special topic and gives a presentation.

Prof. Gantumur Tsogtgerel

MATH 599

Institution: Université McGill

Géométrie riemannienne

Ce cours est proposé comme une introduction à la géométrie riemannienne. Nous couvrirons les sujets classiques suivants : Variétés riemanniennes, connexions, géodésiques. Exemples de variétés riemanniennes. Courbure sectionnelle, courbure de Ricci, courbure scalaire. Lemme de Gauss, application exponentielle, théorème de Hopf-Rinow. Transport parallèle, holonomie, théorème d'irréductibilité et de De Rham. Variations première et seconde, champs de Jacobi, cut locus. Théorème de Bonnet-Myers, théorème de Synge, théorème de Cartan-Hadamard. Théorème de comparaison de Rauch, Alexandrov et Toponogov. Submersion riemannienne, espaces homogènes riemanniens, espaces symétriques, l'exemple de l'espace projectif complexe. Théorème de Hodge-De Rham. Théorème de Bochner. Volume, théorèmes de Bishop et de Heintze-Karcher. Sous-variétés, seconde forme fondamentale, équation de Gauss. Inégalités isopérimétriques. Géométrie spectrale. Théorème de finitude de Cheeger.

Prof. Vestislav Apostolov

MAT 9231

Institution: Université du Québec à Montréal

Géométrie différentielle (UQTR)

L'objectif du cours est de présenter les concepts principaux de la théorie des courbes et des surfaces plongées dans des espaces multidimensionnels. Dans ce cours, nous présentons les sujets suivants :

Théorie générale au sens de Frenet sur les courbes plongées dans des espaces multidimensionnels. Procédure d'orthogonalisation de Gram-Schmidt, Repaire mobile, Théorème fondamentale de la théorie des courbes dans Rn.

Théorie générale des surfaces plongées dans des espaces multidimensionnels basée sur la théorie du repaire mobile. Formules de Gauss-Weingarten et de Gauss-Codazzi, Caractérisation au moyen des formes fondamentales des surfaces.

Propriétés intrinsèques des surfaces. Courbures et lignes géodésiques, Surfaces à courbure constante, Théorème de Bauss-Bonnet.

Propriétés extrinsèques des surfaces. Courbure normale, Courbure moyenne, Points umbiliques, Direction conjuguée et lignes asymptotiques, Courbures principales et l'indicateur de Dupin.

Propriétés globales et caractérisation des surfaces. Forme différentielle extérieure, Lemme de Cartan, Théorie du repaire mobile, Représentation d'Enneper-Weierstrass des surfaces.

Prof. Michel Grundland

MAP6020

Institution: Université du Québec à Trois-Rivières

Topics in Geometry and Topology: Classical mechanics and symplectic geometry

Location: Monday and Wednesday 14h35-15h55 BURN 1214

This course will serve as an introduction to the Hamiltonian formulation of classical mechanics, and the underlying differential geometry of symplectic and Poisson manifolds. We will cover:

- examples of mechanical systems, e.g. oscillators, pendulums and tops - Hamilton's equations of motion
- definitions and basic properties of symplectic and Poisson manifolds
- Liouville's theorem on phase space volumes

- Lagrangian submanifolds and Weinstein's neighbourhood theorem - momentum, symmetries and symplectic reduction
- integrable systems and action-angle variables

Further advanced topics may be selected based on the tastes and background of the audience. Possibilities include local normal forms and stability of equilibiria; classification of toric integrable systems via Delzant polytopes; perturbations of integrable systems and the Kolmogorov-Arnold-Moser (KAM) theorem; Arnold's conjecture on periodic orbits and rudiments of Floer theory; or links with quantum mechanics via geometric/deformation quantization.

Prof. Brent Pym

MATH 599

Institution: Université McGill