Mathématiques actuarielles et financières

Source: Luis Villa del Campo, Times Square - NASDAQ

Description du programme

Les mathématiques actuarielles et financières sont les mathématiques appliquées aux problèmes d’assurance et de finance. Le regroupement concentre donc ses activités sur le développement et l'utilisation de méthodes probabilistes et statistiques afin d'analyser des problématiques ayant des impacts financiers sur la société. La promotion des études de 2e et 3e cycle en mathématiques actuarielles et financières est aussi au cœur de la mission du regroupement.

Les intérêts de recherche, et donc aussi d’enseignement, des membres portent généralement sur l’assurance de dommage (IARD) et la statistique actuarielle, la finance actuarielle et la finance mathématique, ainsi que les mathématiques du risque et la théorie de la ruine. Plus particulièrement:

  • la tarification et le provisionnement en assurance IARD
  • la solvabilité des institutions financières
  • l’innovation financière et actuarielle en assurance: tarification et couverture des rentes variables et produits d’assurance liés aux marchés boursiers
  • la modélisation du risque de longévité, de la mortalité et de la morbidité, et les impacts en assurance vie et sur les régimes de retraite
  • la quantification de l’impact des catastrophes naturelles, des changements climatiques et autres risques extrêmes
  • les modèles de dépendance
  • les mesures de risque
  • les modèles pour la fréquence et la sévérité des sinistres
  • le contrôle stochastique des processus de risque et l’optimisation stochastique
  • l’analyse statistique des méga-données en assurance

Liens:

Membres du programme

Cours 2021-22

Automne

Mathematical and Computational Finance II

This course focuses on computational aspects, implementation, continuous-time models, and advanced topics in Mathematical and Computational Finance.  We shall cover the following topics (time permitting):

  • Calibration and implementation
  • Brownian motion and stochastic calculus
  • Elements of continuous time finance
  • PDE methods
  • Monte-Carlo methods
  • Exotic derivatives
  • Risk management
  • Other topics

Prof. Frédéric Godin

MAST 729A (MAST 881A)

Institution: Concordia University

Credibility Theory

The course presents an introduction to statistical estimation techniques for insurance data. It is the natural continuation of Risk Theory, which discusses the probabilistic aspects of insurance portfolios. Two approaches to credibility theory are discussed: limited fluctuations and greatest accuracy. Topics covered include American, Bayesian and exact credibility. Bühlmann, Bühlmann-Straub, hierarchical and regression credibility models are derived. Generalized linear models and the issue of robustness will also be discussed. The course prepares for the Credibility part of the Society of Actuaries Exam   STAM and the Casualty Actuarial Society Exam MAS II. It also covers more advanced material, as needed to use modern credibility with real insurance data. A grade of B or better is needed to apply to the Canadian Institute of Actuaries for exemption of Exam STAM (see Accredited Programs (concordia.ca).

Prof. Yang Lu

MAST 725 / MAST 881D

Institution: Concordia University

Topics in Actuarial Mathematics: Risk Measures

This course is intended to deepen statistical and probabilistic concepts, related
to risk measures. The topics are:
(1) Definition of Distributional Univariate Risk Measures and Properties
(2) Risk Aggregation and Decomposition
(3) Optimization Based Univariate Risk Measures
(4) Systemic Risk
(5) Sensitivity Analysis
(6) Distorted Measures
(7) Backtesting, Regression, Depth Trimmed Regions
(8) Multivariate Framework and Extension of Univariate Risk Measures

Prof. Mélina Mailhot

MAST 729M / MAST 881M

Institution: Concordia University

Finance mathématique

Structures à terme, processus stochastiques, modèles et produits dérivés de taux d'intérêt, immunisation et appariement, produits dérivés de crédit, titres adossés à des créances hypothécaires, volatilité.

Prof. Emilio Saïd

ACT 6230

Institution: Université de Montréal

Mesure et probabilités

Tribus et variables aléatoires. Théorie de l'intégration: théorème de Lebesgue, espace Lp, théorème de Fubini. Construction de mesures, mesure de Radon. Indépendance. Conditionnement.

 

Prof. Hélène Guérin

MAT 7070

Institution: Université du Québec à Montréal

Analyse mathématique du risque

Mesures et comparaison des risques, Théorie de la ruine en temps discret et continu, Mouvement brownien et temps de premier passage, Modèles de risque de crédit, Concepts et mesures de dépendance, Copules, Applications des modèles de dépendance en actuariat et en finance.

Prof. Mathieu Boudreault

MAT 8600

Institution: Université du Québec à Montréal

Analyse statistique des réserves en assurance Iard

Prof. Mathieu Pigeon

MAT998F

Institution: Université du Québec à Montréal

Sujets avancés en tarification Iard

Prof. Jean-Philippe Boucher

MAT998H

Institution: Université du Québec à Montréal

Hiver

Loss Distributions

The problem of fitting probability distributions to loss data is studied.  In practice, heavy tailed distributions are used (i.e. skewed to the right) which require some special inferential methods.  The problems of point and interval estimation, test of hypotheses and goodness of fit are studied in detail under a variety of inferential procedures (empirical, maximum likelihood and minimum distance) and of sampling designs (individual/grouped data, truncation and censoring).  Loss data sets serve as illustration of the method. A reasonable understanding of undergraduate mathematical statistics is the only prerequisite for the course.  The statistical package S-Plus or the (shareware) statistical software R or the spreadsheet EXCEL application will be used for data analysis. The course prepares for the Loss Models part of the Society of Actuaries (SOA) Exam STAM and the Casualty Actuarial Society (CAS) Exam MAS-I.

Prof. Ionica Groparu-Cojocaru

MAST 726 / MAST881E

Institution: Concordia University

Math and Computational Finance I

This course is a rigorous introduction to mathematical and computational finance. The focus is on the general theory through a thorough study of binomial models in finance. The topics covered include:

  • The binomial no-arbitrage pricing model: replication, hedging, and risk-neutral pricing.
  • State prices: change of measure, Radon-Nikodym derivatives, capital asset pricing model, and utility maximization.
  • European and American derivative securities: call and put options, stopping times, and exotic derivative securities.
  • Random walks: first passage times, reflection principal, and perpetual American options.
  • Interest-rate derivatives: binomial model for interest rates, bonds, fixed income derivatives, forward measure, the Ho-Lee and Black-
Derman-Toy models.
  • Forward and Futures contracts.
  • Convergence of the binomial model to the Black-Scholes model. 
The Black-Scholes Formula.
  • Numerical methods and calibration.

Prof. Cody Hyndman

MAST 729F/ MAST 881F/4

Institution: Concordia University

Risk Theory

The emphasis is on the probabilistic aspects (stochastic processes) although some estimation (inference) questions will also be discussed. The topics include (but are not limited to) aggregate risk models, homogenous and nonhomogenous discrete-time Markov chain models, Poisson processes, coinsurance, effects of inflation on losses, copulas, risk measures (VaR, TVaR), claim reserving. 


Prof. Ioana Groparu

MAST 724

Institution: Concordia University

Modèles à chaîne de Markov cachée en finance

Ce cours offre une introduction aux méthodes d’inférence pour les modèles à chaîne de Markov cachée (hidden Markov models), aussi connus sous les appellations modèles à changement de régimes (regime-switching models) ou modèles espace-état (state-space models). Ces processus sont des modèles de séries temporelles faisant intervenir un signal markovien observé de façon imparfaite et bruité sous forme de données.

Le cours aborde les propriétés statistiques du modèle, l’estimation des paramètres et les techniques de filtrage, de lissage et de prédiction qui y sont reliées. Les méthodes suivantes seront notamment étudiées : filtre d’Hamilton, algorithme avant-arrière, filtre de Kalman, filtre particulaire, méthodes de Monte Carlo séquentielles et algorithme espérance-maximisation.

Des applications en mathématiques financières seront présentées et l’étudiant sera appelé à implanter plusieurs algorithmes à l’aide du logiciel informatique R.

Prof. Maciej Augustyniak

ACT6275

Institution: Université de Montréal

Méthodes stochastiques en finance I

Modèles discrets. Stratégies de transaction. Arbitrage. Marchés complets. Évaluation des options. Problème d'arrêt optimal et options américaines. Mouvement brownien. Intégrale stochastique, propriétés. Formule d'Itô. Localisation. Introduction aux équations différentielles sotchastiques. Changement de probabilité et théorème de Girsanov. Représentation des martingales et stratégie de couverture. Modèle de Black et Scholes.

 

Prof.

MAT 8601

Institution: Université du Québec à Montréal

Méthodes stochastiques en finance II

Modèle de Black-Scholes; Changements de numéraire; Options exotiques; Options américaines; Modèles à temps discret (GARCH, changements de régime, volatilité stochastique): inférence et simulation; Modèles à temps continu (sauts, volatilité stochastique): inférence et simulation; Modèles de taux d'intérêt: tarification, couverture, inférence et simulation.

Prof.

MAT 8602

Institution: Université du Québec à Montréal

Modèles de dépendance et mesures de risque

Prof. Étienne Marceau

ACT-7008

Institution: Université Laval