Mathématiques appliquées et calcul scientifique

Description du programme

Les intérêts de recherche des membres du groupe couvrent plusieurs domaines connexes dont systèmes dynamiques et équations différentielles avec retard; la mécanique des fluides et des milieux continus; la physique des matériaux, les transitions de phase et la croissance des cristaux; les méthodes numériques en dynamique des fluides et l'analyse asymptotique; l'optimisation de forme et de structure; et le contrôle des équations aux dérivées partielles.

Deux centres de recherche sont affiliés au groupe:

Membres du programme

Formation

L'objectif de ce programme est de donner une formation moderne en mathématiques orientée vers les applications et l'utilisation de l'ordinateur comme outil d'analyse, d'optimisation et de contrôle de systèmes physiques et technologiques. Ce programme accueille des étudiants avec des formations solides (allant de la physique et du génie aux mathématiques) qui désirent travailler dans le domaine des équations aux dérivées partielles et de leurs applications. Le spectre du programme est assez large pour accommoder aussi bien le développement de logiciels ou la modélisation physique que des sujets fins d'analyse fonctionnelle ou d'équations aux dérivées partielles.

L'intention est d'associer les étudiants aux activités de groupes de recherche locaux, gouvernementaux ou industriels, comme par exemple l'Agence Spatiale Canadienne ou d'autres organisations avec lesquelles des membres du groupe responsable du programme sont ou ont été impliqués.

Le programme couvre plusieurs domaines connexes dont:

  • systèmes dynamiques et équations différentielles avec retard.
  • la mécanique des fluides et des milieux continus.
  • la physique des matériaux, les transitions de phase et la croissance des cristaux.
  • les méthodes numériques en dynamique des fluides et l'analyse asymptotique.
  • l'optimisation de forme et de structure.
  • le contrôle des équations aux dérivées partielles.

Il n'y a pas de prérequis spécifiques autres que ceux exigés par chaque département. Cependant il est fortement conseillé de choisir les cours en consultation avec un professeur appartenant au groupe responsable du programme et de tenir compte des recommandations suivantes.

  1. Tous les étudiants devraient prendre des cours d'équations aux dérivées partielles: par exemple les cours MATH 580 et MATH 581 à McGill et MAT 6110 à l'U de M.
  2. Il est essentiel pour la plupart (et désirable pour tous) de développer ses aptitudes au calcul scientifique en suivant des cours pertinents en analyse numérique. Au delà des cours d'introduction principalement au premier cycle, les cours essentiels portent sur le calcul scientifique (MATH 578 à McGill et MAT 6470 à l'U de M), les équations numériques différentielles (MATH 579 à McGill) les méthodes aux différences finies (MAT 6165 à l'U de M), les méthodes d'éléments finis (MTH 6206/7 à Polytechnique et le cours de MAT 6450 à l'U de M).
  3. Les étudiants devraient acquérir des connaissances dans les domaines proches de la physique comme la mécanique des fluides, celle des milieux continus, la thermodynamique, etc. Les cours visés portent les sigles MATH 555 à McGill et MAT 6150 à l'U de M; les départements de physique et de génie offrent aussi d'autres cours pertinents.
  4. Les étudiants en mécanique des fluides ou sciences des matériaux devraient suivre un cours en méthodes asymptotiques et en méthodes de perturbation (MATH 651 à McGill ou MTH 6506 à Polytechnique).
  5. Les étudiants qui désirent travailler en optimisation de formes ou en contrôle devraient prendre au moins un cours en optimisation. Les cours suivants sont donnés régulièrement : MATH 560 à McGill; MAT 6428, MAT 6439 (Optimisation et contrôle), MAT 6441 (Analyse et optimisation de forme) à l'U de M; MTH 6403 et MTH 6408 à Polytechnique.
  6. Les étudiants qui désirent travailler en optimisation de formes ou en contrôle des équations aux dérivées partielles devront acquérir des connaissances en analyse mathématique et en analyse fonctionnelle.

L'évolution future et la formalisation du programme se feront dans le cadre décrit ci-dessus. Celui-ci est assez large pour éventuellement permettre l'ajout de nouveaux thèmes selon les besoins.

Cours 2018-19

Automne

Numerical Analysis 1

Development, analysis and effective use of numerical methods to solve problems arising in applications. Topics include direct and iterative methods for the solution of linear equations (including preconditioning), eigenvalue problems, interpolation, approximation, quadrature, solution of nonlinear systems.

Prof. Adam Oberman

MATH 578

Institution: Université McGill

Partial Differential Equations 1

The main focus of the course is going to be on linear first and second order equations, and Sobolev spaces. Rather than trying to build everything in full generality, we will study prototypical examples in detail to establish good intuition. Roughly speaking, most of the topics from the calendar description of Math 580 and some from that of Math 581 will be covered. More precisely, the planned topics are

• First order equations, method of characteristics

• Cauchy problem for heat and wave equations

• Duhamel's, Huygens, and maximum principles

• Green's identities, harmonic functions, Harnack inequality

• Fundamental solution, Green's function, Poisson's formula

• Dirichlet problem: Perron's method, barriers, boundary regularity

• Sobolev spaces, weak and strong derivatives, Dirichlet principle

• Poisson equations: Variational formulation, boundary conditions

• Elliptic regularity, Sobolev embedding

• Laplace eigenvalues and eigenfunctions (if time permits)

Prof. Gantumur Tsogtgerel

MATH 580

Institution: Université McGill

Topics in Applied Mathematics: Delay Differential Equations

Many physical processes are modelled by differential equations which involve delays. This course will provide an introduction to delay differential equations (DDEs) concentrating on the key tools needed to understand the behaviour of these equations, and also some of numerical techniques used to approximate solutions. Throughout we will emphasise the similarities and differences between DDEs and ordinary differential equations (ODEs).

Topics covered will include: DDEs as infinite dimensional dynamical systems, breaking points and smoothing of DDE solutions, continuous Runge-Kutta methods for ODEs and DDEs, linear stability of steady states, bifurcation theory. A selection of more advanced topics will also be covered. The choice of topics will depend on time and the preferences of the participants, but may include state-dependent delays, distributed delays, numerical continuation and bifurcation techniques.

Prof. Tony Humphries

MATH 597

Institution: Université McGill

Topics in Applied Mathematics: Convex Optimisation

Prof. Tim Hoheisel

MATH 597

Institution: Université McGill

Hiver

Reinforcement Learning

This course focuses on solving Markov Decision Problems (MDP) using methods of dynamic programming and reinforcement learning. Solution approaches to finite and infinite horizon MDP through the Bellman Equation, value function iteration and policy iteration are presented. Approximate dynamic programming ideas are then introduced to increase computational speed. Methods of reinforcement learning such as temporal-difference learning, online versus offline control and eligibility traces are then illustrated. Students will have to code extensively in R throughout the course.

Prof. Frédéric Godin

MAST 679-H, MAST 881-H

Institution: Concordia University

Algorithms for Optimization and Big Data Analysis

Algorithmic methods for big data analysis. Complexity analysis, data structure, parallel and distributed computing.

The course is organized in 4 themes that will cover various aspects of algorithmic for big data, starting from sequential programming and ending with distributed computing. In the first part of the course, the student will learn to analyze an algorithm from the computational complexity and memory requirement. The second theme in the course deals with parallel computing with shared memory. The efficiency of the parallelization and memory safety will be discussed and analysed. In the third theme, the message passing interface (MPI) will be explored, which consists in simultaneous and collaborative parallel computing without shared memory. Finally, the basics of distributed computing, its strength and requirements will be introduced. The choice of the best approach toward the resolution of a problem will depend on the problem and the nature of the data.

Prof.

6-607-18A

Institution: HEC Montréal

Numerical Differential Equations

Numerical solution of initial and boundary value problems in science and engineering: ordinary differential equations; partial differential equations of elliptic, parabolic and hyperbolic type. Topics include Runge Kutta and linear multistep methods, adaptivity, finite elements, finite differences, finite volumes, spectral methods.

Prof. Adam Oberman

MATH 579

Institution: Université McGill

Fluid Dynamics

Kinematics. Dynamics of general fluids. Inviscid fluids, Navier-Stokes equations. Exact solutions of Navier-Stokes equations. Low and high Reynolds number flow.

Prof. Pater Bartello

MATH 555

Institution: Université McGill

Partial Differential Equations 2

The main focus of the course is going to be on nonlinear problems. Sobolev spaces, the Fourier transform, and functional analytic methods will be heavily used. The planned topics are

• Tempered distributions, convolution, Fourier transform

• Fourier analytic treatment of Sobolev spaces

• Problems in half-space, shades of hyperbolicity, parabolicity, and ellipticity

• Overview of elliptic theory, regularity

• Semilinear elliptic equations, monotonicity methods

• Variational problems, compactness methods

• Semilinear evolution equations, Duhamel's principle

• The Navier-Stokes equations and related turbulence models

• Semilinear elliptic problems with critical exponents (if time permits)

Prof. Gantumur Tsogtgerel

MATH 581

Institution: Université McGill

Non-linear and Hybrid Control Systems

Introduction and examples of typical non-linear and hybrid control systems (respectively NLS and HCS). Specification of HCS via interlinked ODEs and automata. Controlled and autonomous discrete state switching. HCS trajectories: continuous and discrete state evolution. System linearization. Lyapunov stability theory. Regular and exotic trajectories of HCS. Hopf bifurcations. Basic topological dynamics and LaSalle stability theory for NLS and HCS. Switched systems. Controllability and stabilization of NLS and HCS. Controlled Lyapunov functions. The Hybrid Maximum Principle and Hybrid Dynamic Programming: optimal control theory and computational algorithms.

Course:  ECSE 516  Department of Electrical and Computer Engineering,McGill University.

Note: this course is not restricted to engineering students.

 Instructor  P. E. Caines   peterc@cim.mcgill.ca

Prof. Peter Caines

ECSE 516

Institution: Université McGill

Calcul scientifique

Étude des algorithmes fondamentaux en calcul scientifique. Principes théoriques; programmation et application à des problèmes pratiques; utilisation scientifique de logiciels spécialisés.

Prof. Robert G. Owens

MAT 6470

Institution: Université de Montréal