Mathématiques appliquées et calcul scientifique

Description du programme

Les intérêts de recherche des membres du groupe couvrent plusieurs domaines connexes dont systèmes dynamiques et équations différentielles avec retard; la mécanique des fluides et des milieux continus; la physique des matériaux, les transitions de phase et la croissance des cristaux; les méthodes numériques en dynamique des fluides et l'analyse asymptotique; l'optimisation de forme et de structure; et le contrôle des équations aux dérivées partielles.

Deux centres de recherche sont affiliés au groupe:

Membres du programme

Formation

L'objectif de ce programme est de donner une formation moderne en mathématiques orientée vers les applications et l'utilisation de l'ordinateur comme outil d'analyse, d'optimisation et de contrôle de systèmes physiques et technologiques. Ce programme accueille des étudiants avec des formations solides (allant de la physique et du génie aux mathématiques) qui désirent travailler dans le domaine des équations aux dérivées partielles et de leurs applications. Le spectre du programme est assez large pour accommoder aussi bien le développement de logiciels ou la modélisation physique que des sujets fins d'analyse fonctionnelle ou d'équations aux dérivées partielles.

L'intention est d'associer les étudiants aux activités de groupes de recherche locaux, gouvernementaux ou industriels, comme par exemple l'Agence Spatiale Canadienne ou d'autres organisations avec lesquelles des membres du groupe responsable du programme sont ou ont été impliqués.

Le programme couvre plusieurs domaines connexes dont:

  • systèmes dynamiques et équations différentielles avec retard.
  • la mécanique des fluides et des milieux continus.
  • la physique des matériaux, les transitions de phase et la croissance des cristaux.
  • les méthodes numériques en dynamique des fluides et l'analyse asymptotique.
  • l'optimisation de forme et de structure.
  • le contrôle des équations aux dérivées partielles.

Il n'y a pas de prérequis spécifiques autres que ceux exigés par chaque département. Cependant il est fortement conseillé de choisir les cours en consultation avec un professeur appartenant au groupe responsable du programme et de tenir compte des recommandations suivantes.

  1. Tous les étudiants devraient prendre des cours d'équations aux dérivées partielles: par exemple les cours MATH 580 et MATH 581 à McGill et MAT 6110 à l'U de M.
  2. Il est essentiel pour la plupart (et désirable pour tous) de développer ses aptitudes au calcul scientifique en suivant des cours pertinents en analyse numérique. Au delà des cours d'introduction principalement au premier cycle, les cours essentiels portent sur le calcul scientifique (MATH 578 à McGill et MAT 6470 à l'U de M), les équations numériques différentielles (MATH 579 à McGill) les méthodes aux différences finies (MAT 6165 à l'U de M), les méthodes d'éléments finis (MTH 6206/7 à Polytechnique et le cours de MAT 6450 à l'U de M).
  3. Les étudiants devraient acquérir des connaissances dans les domaines proches de la physique comme la mécanique des fluides, celle des milieux continus, la thermodynamique, etc. Les cours visés portent les sigles MATH 555 à McGill et MAT 6150 à l'U de M; les départements de physique et de génie offrent aussi d'autres cours pertinents.
  4. Les étudiants en mécanique des fluides ou sciences des matériaux devraient suivre un cours en méthodes asymptotiques et en méthodes de perturbation (MATH 651 à McGill ou MTH 6506 à Polytechnique).
  5. Les étudiants qui désirent travailler en optimisation de formes ou en contrôle devraient prendre au moins un cours en optimisation. Les cours suivants sont donnés régulièrement : MATH 560 à McGill; MAT 6428, MAT 6439 (Optimisation et contrôle), MAT 6441 (Analyse et optimisation de forme) à l'U de M; MTH 6403 et MTH 6408 à Polytechnique.
  6. Les étudiants qui désirent travailler en optimisation de formes ou en contrôle des équations aux dérivées partielles devront acquérir des connaissances en analyse mathématique et en analyse fonctionnelle.

L'évolution future et la formalisation du programme se feront dans le cadre décrit ci-dessus. Celui-ci est assez large pour éventuellement permettre l'ajout de nouveaux thèmes selon les besoins.

Cours 2021-22

Automne

Non-linear Programming

The course begins with a review of some topics in multivariate calculus.  Then we go on to discuss convex sets and functions, convex optimization, and (nonlinear) duality theory.    An introduction to Nonsmooth Analysis is given.    All course references and materials are available online.

Prof. Ron Stern

MAST 661A/2 /MAST 837A

Institution: Concordia University

Numerical Analysis 1

Development, analysis and effective use of numerical methods to solve problems arising in applications. Topics include direct and iterative methods for the solution of linear equations (including preconditioning), eigenvalue problems, interpolation, approximation, quadrature, solution of nonlinear systems.

Prof. Jean-Christophe Nave

MATH 578

Institution: Université McGill

Partial Differential Equations 1

Classification and wellposedness of linear and nonlinear partial differential equations; energy methods; Dirichlet principle. Brief introduction to distributions; weak derivatives. Fundamental solutions and Green's functions for Poisson equation, regularity, harmonic functions, maximum principle. Representation formulae for solutions of heat and wave equations, Duhamel's principle. Method of Characteristics, scalar conservation laws, shocks.

Prof. Jessica Lin

MATH 580

Institution: Université McGill

Topics in Applied Mathematics: Convex Optimization

Prof. Tim Hoheisel

MATH 597

Institution: Université McGill

Mathématiques biologiques

Examen de modèles fondamentaux utilisés en biologie mathématique et de leur analyse utilisant des outils modernes de calcul scientifique. Systèmes dynamiques discrets et continus, procédés stochastiques, modèles statistiques et simulation numérique. Enquête des publications récentes en biologie mathématique par journal club.

Prof. Morgan Craig

MAT6463

Institution: Université de Montréal

Théorie spectrale des graphes

Bien que les graphes soient intuitivement et naturellement représentés par des sommets et des arêtes, ces représentations sont limitées, tant en matière d’analyse théorique que la mise en œuvre pratique d’algorithmes de graphes. Une approche plus puissante est obtenue en représentant les graphes par des matrices appropriées (p.ex., des matrices d’adjacence, des noyaux de diffusion ou des laplaciens de graphes) qui capturent les relations intrinsèques entre les sommets sur la «  »géométrie » » représentée par la structure du graphe. La théorie spectrale des graphes exploite ces matrices, et en particulier leurs décompositions spectrales (ou en valeurs et vecteurs propres), pour étudier les propriétés des graphes et leur structure intrinsèque sous-jacente. Cette étude conduit à des résultats surprenants et élégants, non seulement d’un point de vue mathématique, mais aussi dans la pratique avec des implémentations réalisables utilisées, par exemple, dans le regroupement, la visualisation, la réduction de la dimensionnalité, l’apprentissage de variétés et l’apprentissage profond géométrique. Enfin, comme presque toutes les données modernes peuvent aujourd’hui être modélisées sous forme de graphe, soit naturellement (p.ex., les réseaux sociaux), soit par le biais de mesures d’affinité appropriées, les notions et les outils étudiés dans ce cours fournissent un cadre puissant pour saisir et comprendre la géométrie des données en général.

Prof. Guy Wolf

MAT6495

Institution: Université de Montréal

Hiver

High-Dimensional Probability with Applications to Data Science

Topics will include (time permitting) concentration of sum or random variables, random vectors in high-dimensions, random matrices, symmetrization, random processes, chaining. We will also discuss applications in key data science areas, such as random graphs, community detection in networks, dimensionality reduction, statistical learning theory, and sparse recovery.

Prof. Simone Brugiapaglia

MAST 679P / MAST 881P

Institution: Concordia University

Algorithmic Game Theory

Foundations of game theory. Computation aspects of equilibria. Theory of auctions and modern auction design. General equilibrium theory and welfare economics. Algorithmic mechanism design. Dynamic games.

Prof. Adrian Vetta

MATH 553

Institution: Université McGill

Optimization

Line search methods including steepest descent, Newton's (and Quasi-Newton) methods. Trust region methods, conjugate gradient method, solving nonlinear equations, theory of constrained optimization including a rigorous derivation of Karush-Kuhn-Tucker conditions, convex optimization including duality and sensitivity. Interior point methods for linear programming, and conic programming.

Prof. Courtney Paquette

MATH 560

Institution: Université McGill

Theory of Machine Learning

Concentration inequalities, PAC model, VC dimension, Rademacher complexity, convex optimization, gradient descent, boosting, kernels, support vector machines, regression and learning bounds. Further topics selected from: Gaussian processes, online learning, regret bounds, basic neural network theory.

Prof. Adam Oberman

MATH 562

Institution: Université McGill

Numerical Differential Equations

Numerical solution of initial and boundary value problems in science and engineering: ordinary differential equations; partial differential equations of elliptic, parabolic and hyperbolic type. Topics include Runge Kutta and linear multistep methods, adaptivity, finite elements, finite differences, finite volumes, spectral methods.

Prof.

MATH 579

Institution: Université McGill

Partial Differential Equations 2

Systems of conservation laws and Riemann invariants. Cauchy-Kowalevskaya theorem, powers series solutions. Distributions and transforms. Weak solutions; introduction to Sobolev spaces with applications. Elliptic equations, Fredholm theory and spectra of elliptic operators. Second order parabolic and hyperbolic equations. Further advanced topics may be included.

Prof. Gantumur Tsogtgerel

MATH 581

Institution: Université McGill

Systèmes dynamiques

Flots discrets et continus. Équations différentielles non linéaires, techniques classiques d’analyse de dynamique, existence et stabilité de solutions, variétés invariantes, bifurcations, formes normales, systèmes chaotiques. Applications moderne.

Prof. Guillaume Lajoie

MAT 6215

Institution: Université de Montréal

Calcul scientifique

Virgule flottante. ÉDOs. Modélisation et simulations. Méthodes directes et itératives pour la résolution de systèmes linéaires et non-linéaires. Valeurs propres et valeurs singulières. Optimisation sans contraintes. ÉDPs elliptiques et paraboliques. Équation de Black-Scholes.

Prof. Robert G. Owens

MAT 6473

Institution: Université de Montréal