La statistique concerne l’élaboration et l’emploi de méthodes mathématiques et informatiques pour la collecte, l’analyse et l’interprétation de données visant à soutenir la recherche scientifique, la prise de décision éclairée et la gestion des risques. Elle fait appel à un large éventail d’outils, allant de la théorie des probabilités aux techniques de calcul intensif sur ordinateur. Parmi les principaux domaines de recherche des statisticiens du réseau de l’ISM, notons
La recherche statistique est motivée en grande partie par des collaborations interdisciplinaires. Elle trouve des applications dans de nombreux domaines tels la biologie, les sciences de l’environnement, la finance et l’assurance, les sciences de la santé, l’hydrologie, le marketing et les sciences sociales. Avec l’abondance d’ensembles de données complexes et de grande taille émanant entre autres des médias sociaux et des processus numériques, des transactions financières, de l’astronomie, de la génomique, de la météorologie ou de la mégascience comme le grand collisionneur de hadrons, le traitement et l’analyse de données volumineuses est un enjeu majeur de la statistique moderne.
Le programme de statistique fournit aux étudiants gradués l'occasion d'étudier dans ces deux domaines importants de la statistique moderne. Les cours offerts dans ce programme permettront aux étudiants de 2e et 3e cycles de bien se familiariser avec les bases de la statistique mathématique, de la théorie de la décision et la statistique appliquée. De plus, quelques cours sont offerts pour initier les étudiants à des sujets de pointe dans ces domaines.
Ce programme est ouvert à tous les étudiants ayant une base solide en calcul différentiel et intégral, statistique mathématique, analyse numérique ainsi qu'en probabilité (le tout au niveau du 1er cycle). Pour acquérir une bonne formation en théorie de la décision et en statistique mathématique, nous pensons que les étudiants devraient prendre un cours de base en mesure et intégration (pour les étudiants au 3e cycle) et au moins trois cours aux niveaux intermédiaires et avancés.
This course is an introduction to statistical inference for parametric models. The following topics will be covered:
1. Distribution of functions of several random variables (distribution function and change of variable techniques), sampling distribution of mean and variance of a sample from Normal distribution.
2. Distribution of order statistics and sample quantiles.
3. Estimation: unbiasedness, Cramér-Rao lower bound and efficiency, method of moments and maximum likelihood estimation, consistency, limiting distributions, delta-method.
4. Sufficiency, minimal sufficiency, completeness, UMVUE, Rao-Blackwell and Lehman-Scheffe theorems.
5. Hypothesis-testing: likelihood-ratio tests.
6. Elements of Bayesian estimation and hypothesis-testing.
Text: Introduction to Mathematical Statistics (6th, 7th or 8th Edition), by R.V. Hogg and A.T. Craig, Prentice Hall Inc., 1994. Recommended reading: (for problems, examples etc) Statistical Inference (2nd Edition), by G. Casella and R. L. Berger, Duxbury, 2002. Evaluation: Assignments (4), Midterm exam, Final exam.
This course introduces the mathematical foundations of data science. Topics covered tentatively include machine learning basics, rudiments of statistical learning theory, optimal recovery, compressive sensing, elements of optimization theory and deep learning. Although the course will focus on theoretical aspects, it will also include computational illustrations. We will primarily follow the book "Mathematical Pictures at a Data Science Exhibition" by S. Foucart (Cambridge University Press, 2022). The course will include a final individual research project.
This course introduces multivariate statistical analysis, both theory and methods, with focus on the multivariate Normal distribution. It can be seen as a preparatory course, although not a formal prerequisite, for Statistical Learning. Topics covered include:
Distribution free procedures for 2-sample problem: Wilcoxon rank sum, Siegel-Tukey, Smirnov tests. Shift model: power and estimation. Single sample procedures: Sign, Wilcoxon signed rank tests. Nonparametric ANOVA: Kruskal-Wallis, Friedman tests. Association: Spearman's rank correlation, Kendall's tau. Goodness of fit: Pearson's chi-square, likelihood ratio, Kolmogorov-Smirnov tests. Statistical software packages used.
Multivariate normal and chi-squared distributions; quadratic forms. Multiple linear regression estimators and their properties. General linear hypothesis tests. Prediction and confidence intervals. Asymptotic properties of least squares estimators. Weighted least squares. Variable selection and regularization. Selected advanced topics in regression. Applications to experimental and observational data.
Distribution theory, stochastic models and multivariate transformations. Families of distributions including location-scale families, exponential families, convolution families, exponential dispersion models and hierarchical models. Concentration inequalities. Characteristic functions. Convergence in probability, almost surely, in Lp and in distribution. Laws of large numbers and Central Limit Theorem. Stochastic simulation.
Rare events such as extreme weather phenomena, large insurance claims and financial crashes are of prime concern for society. The aim of this course is to introduce the mathematical and statistical modeling of extremal events.
General introduction to computational methods in statistics; optimization methods; EM algorithm; random number generation and simulations; bootstrap, jackknife, cross-validation, resampling and permutation; Monte Carlo methods: Markov chain Monte Carlo and sequential Monte Carlo; computation in the R language.
Conditional probability and Bayes’ Theorem, discrete and continuous univariate and multivariate distributions, conditional distributions, moments, independence of random variables. Modes of convergence, weak law of large numbers, central limit theorem. Point and interval estimation. Likelihood inference. Bayesian estimation and inference. Hypothesis testing.
Parametric survival models. Nonparametric analysis: Kaplan-Meier estimator and its properties. Covariates with emphasis on Cox's proportional hazards model. Marginal and partial likelihood. Logrank tests. Residual analysis. Homework assignments a mixture of theory and applications. In-class discussion of data tests.
Étude du « bootstrap ». Estimation du biais et de l'écart-type. Intervalles de confiance et tests. Applications diverses, incluant la régression et les données dépendantes. Étude du « jackknife », de la validation croisée et du sous-échantillonnage.
Notions de probabilités. Comportement asymptotique des moments et quantiles échantillonnaux. Normalité asymptotique de transformation; stabilisation de la variance. Loi asymptotique du test du khi-deux. Théorie asymptotique en inférence paramétrique.
Tableaux de contingence. Mesures d'association. Risque relatif et rapport de cote. Tests exacts et asymptotiques. Régression logistique, de Poisson. Modèles log-linéaires. Tableaux de contingence à plusieurs dimensions. Méthodes non paramétriques.
Techniques descriptives. Processus stationnaires. Meilleure prévision linéaire. Modèles ARMA, ARIMA et modèles saisonniers. Estimation et prévision dans les ARMA. Éléments d’analyse spectrale. Modèles ARCH et GARCH.
Processus stochastiques (généralités). Description et caractéristiques des séries chronologiques. Transformées de Fourier. Analyse statistique des séries chronologiques. Analyse spectrale des processus linéaires. Lissage des estimateurs spectraux.
Concepts de base d'un problème de décision statistique et d'analyse bayésienne. Lois apriori et aposteriori. Fonctions de coût. Règles aléatoires, règles de Bayes, règles minimax et maximin. Notions d'admissibilité et de dominance. Exhaustivité. Règles de décision invariantes. Sujets choisis parmi l'estimation de Stein, l'estimation sous contraintes, l'estimation par intervalles et les tests d'hypothèses.
Espérance conditionnelle. Prédiction. Modèles statistiques, familles exponentielles, exhaustivité. Méthodes d'estimation: maximum de vraisemblance, moindres carrés etc. Optimalité: estimateurs sans biais à variance minimum, inégalité de l'information. Propriétés asymptotiques des estimateurs. Intervalles de confiance et précision. Éléments de base de la théorie des tests. Probabilité critique, puissance en relation avec la taille d'échantillon. Relation entre tests et intervalles de confiance. Tests pour des données discrètes.
Étude des distributions échantillonnales classiques: T2 de Hotelling; loi de Wishart; distribution des valeurs et des vecteurs propres; distribution des coefficients de corrélation. Analyse de variance multivariée. Test d'indépendance de plusieurs sous-vecteurs. Test de l'égalité de matrices de covariance. Sujets spéciaux.
Nombre aléatoire. Simulation de lois classiques. Méthodes d'inversion et de rejet. Algorithmes spécifiques. Simulation des chaines de Markov à temps discret et continu. Solution numérique des équations différentielles ordinaires et stochastiques. Méthode numérique d'Euler et de Runge-Kutta. Formule de Feynman-Kac. Discrétisation. Approximation faible et forte, explicite et implicite. Réduction de la variance. Analyse des données simulées. Sujets spéciaux.
Rappel sur les principales notions de statistique mathématique et sur la statistique asymptotique. Introduction à la théorie des copules. Description des modèles de dépendance bidimensionnels et multidimensionnels les plus populaires et exploration exhaustive des propriétés de ces copules. Inférence statistique dans les modèles de copules : estimation de paramètres, copule empirique, tests d'adéquation et tests d'hypothèses composites. La méthode delta fonctionnelle et ses nombreuses applications, notamment en inférence de copules. Survol des avancées récentes, incluant les tests de rupture, l'étude de la dépendance conditionnelle, la modélisation de la dépendance spatiale et l'utilisation de la fonction caractéristique. Les objectifs spécifiques de ce cours sont : de maîtriser la théorie des copules, de connaître les principales méthodes d'inférence concernant les copules, d'être au fait des principaux développements récents, de bien connaître la littérature sur les copules, d'être capable de mettre en oeuvre les méthodes statistiques avec le logiciel Matlab (estimation de la puissance de tests, analyse de jeux de données).
This course introduces the theory and practice of time series analysis. Both time and frequency domain methods will be discussed. The objective of this course is to learn and apply statistical methods for the analysis of data that have been observed over time. The Analyses will be performed using the freely available package ITSM, which accompanies the textbook. Topics covered include:
The first part of this course covers materials such as Markov chain, branching processes and optimal stopping for Markov chains. The second part covers Brownian motion and its properties, continuous time martingales and stochastic integral. Girsanov transform, Feynman-Kac formula and stochastic differential equations will also be introduced.
This course is an introduction to statistical learning techniques. Some applications to data science will be illustrated. Topics covered include: cross-validation, regression methods (linear and non-linear models: GLMs, GAMs; variable selection methods; shrinkage methods: ridge regression and LASSO), classification methods (K-nearest neighbors, linear and quadratic discriminants, logistic regression, support vector machines), tree-based methods, introduction to neural networks, unsupervised learning, (clustering: K-means, hierarchical clustering; principal component analysis).
This course is an introduction to reinforcement learning techniques. It requires extensive programming with the R language. Topics covered include: Multi-armed bandit problem, Markov Decision Problems, Dynamic Programming, Monte-Carlo solution methods, Temporal difference methods, Multi-period Approximation methods, Policy gradient.
Exponential families, link functions. Inference and parameter estimation for generalized linear models; model selection using analysis of deviance. Residuals. Contingency table analysis, logistic regression, multinomial regression, Poisson regression, log-linear models. Multinomial models. Overdispersion and Quasilikelihood. Applications to experimental and observational data.
Simple random sampling, domains, ratio and regression estimators, superpopulation models, stratified sampling, optimal stratification, cluster sampling, sampling with unequal probabilities, multistage sampling, complex surveys, nonresponse.
Stationary processes; estimation and forecasting of ARMA models; non-stationary and seasonal models; state-space models; financial time series models; multivariate time series models; introduction to spectral analysis; long memory models.
Sufficiency, minimal and complete sufficiency, ancillarity. Fisher and Kullback-Leibler information. Elements of decision theory. Theory of estimation and hypothesis testing from the Bayesian and frequentist perspective. Elements of asymptotic statistics including large-sample behaviour of maximum likelihood estimators, likelihood-ratio tests, and chi-squared goodness-of-fit tests.
Introduction to concepts in statistically designed experiments. Randomization and replication. Completely randomized designs. Simple linear model and analysis of variance. Introduction to blocking. Orthogonal block designs. Models and analysis for block designs. Factorial designs and their analysis. Row-column designs. Latin squares. Model and analysis for fixed row and column effects. Split-plot designs, model and analysis. Relations and operations on factors. Orthogonal factors. Orthogonal decomposition. Orthogonal plot structures. Hasse diagrams. Applications to real data and ethical issues.
Principes de l’analyse bayésienne; loi à priori et à postériori, inférence statistique et théorie de la décision. Méthodes computationnelles; méthodes de Monte Carlo par chaînes de Markov. Applications.
Rappels et compléments sur la théorie du modèle linéaire : moindres carrés, théorèmes de Gauss-Markov et de Cochran, inférence. Modèle à effets fixes et aléatoires. Plan incomplet. Plan à mesures répétées.
Principes d'inférence : estimation ponctuelle, distribution des estimateurs, test d’hypothèse, région de confiance. Approche bayésienne. Méthodes de rééchantillonnage. Estimation non paramétrique. Applications modernes de la statistique.
Analyse en composantes principales. Analyse des corrélations canoniques et régression multidimensionnelle. Analyse des correspondances. Discrimination. Classification. Analyse factorielle d'opérateurs.
Théorie des probabilités. Théorie abstraite de l'intégration. Mesures de Borel, Espaces Lp. Théorème de Radon-Nikodym. Intégration sur les espaces produits et le théorème de Fubini. Espérances conditionnelles.
Théorie des modèles linéaires généraux. Théorie des modèles linéaires généralisés. Régression logistique. Modèles log-linéaires.
Cibles de formation
Objectif général :
Développer les connaissances statistiques nécessaires pour pouvoir construire des modèles statistiques adaptés à répondre à une problématique précise.
Objectif spécifique :
– Apprendre la théorie statistique pour mieux construire, appliquer et interpréter différents modèles statistiques appliqués aux sciences de la vie.
– Devenir familier avec la recherche primaire en modélisation statistique pour les sciences de la vie.
– Gagner de l’expérience à travailler de façon collaborative sur des problématiques liées au développement et à l’application de méthodes statistiques.
Contenu
Modélisation linéaire et nonlinéaire, modélisation de données univariables et multivariables complexes en sciences de la vie. Implémentation de modèles statistiques.
Martingales en temps discret et continu, filtrations en temps discret et continu, temps d’arrêt, théorème d’arrêt de Doob, processus de variation quadratique, processus de Wiener, intégrale d’Itô, lemme d’Itô, changement de mesure, théorème de Girsanov.