La géométrie différentielle et la topologie sont des disciplines fondamentales des mathématiques dont la richesse et la vitalité à travers l’histoire reflètent leur lien profond avec notre appréhension de l’univers. Elles forment un des carrefours névralgiques des mathématiques modernes. En effet, le développement récent de plusieurs domaines des mathématiques doit beaucoup à la géométrisation des idées et des méthodes; en particulier, c’est le cas pour la physique mathématique et la théorie des nombres.
Dans ce sujet assez large, les domaines de recherche principaux du groupe sont : la classification topologique des variétés en dimension 3, la classification des métriques kählériennes spéciales, l’étude des invariants symplectiques (particulièrement en dimension 4), les équations aux dérivées partielles non linéaires en géométrie riemannienne, en géométrie convexe et en relativité générale, géométrie de Poisson et quantification de la déformation, et les systèmes dynamiques hamiltoniens.
La plupart des chercheurs du groupe font partie du CIRGET, le Centre interuniversitaire de recherche en géométrie différentielle et topologie. Le centre organise des événements scientifiques ainsi que plusieurs séminaires hebdomadaires.
Les coordonnateurs du programme envisagent trois niveaux de cours dans le cheminement de l'étudiant:
Basic point-set topology, including connectedness, compactness, product spaces, separation axioms, metric spaces. The fundamental group and covering spaces. Simplicial complexes. Singular and simplicial homology. Part of the material of MATH 577 may be covered as well.
A Lie group is a manifold with a group structure, for example the rotation group O(n). Lie groups are used widely throughout mathematics, including in differential geometry, number theory, and mathematical physics. This course will be an introduction to Lie groups, Lie algebras, and their representations. We will cover the following topics:
Homologie et co-homologie singulières. Fibrations, co-fibrations. Groupes d’homotopie. CW-complexes. Obstructions. Suites spectrales. Produits. Dualité de Poincaré. Théorème du point fixe de Lefschetz. Groupes unitaires et classes de Chern.
On utilisera la mécanique classique et le principe de moindre action pour s'initier aux concepts de base du calcul des variations, notamment les équations d'Euler-Lagrange et les équations d'Hamilton. On transposera alors ces notions en géométrie en abordant plusieurs exemples intéressants: géodésiques, surfaces minimales, métriques à courbure constante, applications harmoniques, flot gradient, théorie de jauge. On se concentrera alors sur les surfaces minimales en s'initiant à une méthode systématique pour les construire: la théorie géométrique de la mesure.
Rappels de topologie et d'analyse. Variétés et applications différentiables, fibré tangent et différentielle d'une application. Théorème du rang constant et formes normales. Partition de l'unité et applications. Transversalité, théorème de Sard et énoncé du théorème de Thom. Tenseurs et formes différentielles, dérivée de Lie et dérivée extérieure. Intégration sur les variétés, théorème de Stokes. Distributions, théorème de Frobenius, feuilletages, Fibrés vectoriels et principaux, les connexions comme systèmes différentiels.
Le cours porte sur un développement de la théorie de Hodge, avec comme point de départ la structure de Hodge d’une courbe et, plus généralement, d’une variété de Kähler. On développe rapidement la théorie des variétés de Kähler et leurs dégénérescences en faisant référence à des livres classiques. Sont ensuite abordés des exemples classiques en exhibant leur rôle dans la classification des variétés algébriques et dans l’étude de leurs espaces de module, en incluant une introduction à la théorie des variations de structures de Hodge. On touchera également à des outils analytiques simples tels l'hyperbolicité pour pouvoir aborder quelques problèmes globaux dans le sujet. On vis à la fin sur notions de stabilité, de la correspondance de Donaldson-Uhlenbeck-Yau et ses généralisations, incluant rudiments de théorie de Hodge non abélienne et ses applications.
L'étude des représentations du groupe fondamental a une longue tradition dans la topologie des 3 variétés. Les représentations SL(2,C) ont été particulièrement bien étudiées en raison d'accessibilité des calculs et de leur connexion à la géométrie hyperbolique. Ce cours vise à discuter certains aspects de cette théorie. La première partie du cours se concentrera sur la géométrie hyperbolique en dimension 3, couvrant des sujets tels que la rigidité de Mostow et le théorème de chirurgie hyperbolique de Dehn de Thurston. La deuxième partie du cours se concentrera sur la machinerie de variété de caractères de Culler et Shalen, dans le but de prouver le théorème de la chirurgie cyclique. Les prérequis pour le cours sont la géométrie algébrique de base (variétés, valuations) et la topologie algébrique de base (groupe fondamental, homologie).
Basic properties of differentiable manifolds, tangent and cotangent bundles, differential forms, de Rham cohomology, integration of forms, Riemannian metrics, geodesics, Riemann curvature.
The course will cover the following topics: free group and its subgroups, uniqueness of decomposition into free product. Groups acting on trees, splitting into free product with amalgamation. Bass-Serre theory. Cayley graph, SL(2,Z), isometry groups of the hyperbolic plane. Isoperimetric inequality, word problem, Dehn’s algorithm. Small cancellation groups. Quasi-isometries and quasi-geodesics. Groups hyperbolic in the sense of Gromov. Boundaries of hyperbolic groups, Tits alternative. Ends of groups. Gromov’s theorem on groups with polynomial growth.
Le laplacien et la théorie elliptique. Espaces de Sobolev. Éléments de la géométrie spectrale. Applications analytiques et topologiques à la géométrie riemannienne, symplectique ou kahlerienne.
Généralités: définitions et exemples de surfaces de Riemann. Les applications holomorphes et méromorphes, leurs propriétés fondamentales. Topologie (classification des surfaces, cohomologie de Cech). Théorie algébrique: faisceaux et cohomologie. Fibrés et formes différentielles. Résolution fine d'un faisceau, théorèmes de De Rham et Dolbeault. Théorèmes de finitude. Diviseurs et fibrés en droites. Théorème de Riemann-Roch. Dualité de Serre. Théorème de Abel-Jacobi. Théorie géométrique: théorème d'uniformisation. Classification des courbes elliptiques (surfaces de Riemann de genre 1). Métrique de Poincaré et surfaces hyperboliques. Notions de théorie de Teichmüller.
Ce cours est proposé comme une introduction à la théorie des groupes et leures algèbres de Lie. Nous couvrirons des sujets classiques, incluant la corréspondence entre les groupes de Lie connexes et simplement connexes et les algèbres de Lie ; sous-groupes fermés ; la représentation adjointe ; groupes de Lie compacts et formes bi-invariantes ; algèbres de Lie nilpotentes, résolubles et semi-simples ; les théorèmes de Lie et de Cartan ; formes de Killing ; décomposition des racines ; classification des algèbres de Lie simples ; algèbres de Lie réductives et décomposition de Cartant ; sous-groupes compacts maximaux.
La topologie symplectique est l’étude des variétés de dimension paire arbitraire munie d’une forme symplectique. Cette forme caractérise complètement la forme de Kähler quand une structure complexe est donnée et réciproquement. Elle est donc équivalente, dans le domaine complexe, à la structure riemannienne. Mais elle est beaucoup plus générale car elle s’applique aussi bien aux variétés qui ne possèdent pas de structure complexe intégrable, comme par exemple la plupart des cotangents des variétés réelles, qui sont le lieu de la mécanique classique et quantique. En gros, la topologie symplectique est la réunion de la géométrie algébrique et de la théorie des systèmes hamiltoniens. Ce qui est fascinant est que la première se trouve dans l’intérieur de la variété alors que la seconde se trouve à son bord. Alternativement, la topologie symplectique est le versant mathématique (plus général) de la théorie des cordes en physique. Le cours s’adresse aux doctorants et aux étudiants de maîtrise avancés. Le cours est self-content. Il sera bilingue (écrire en anglais et parler en français) s’il le faut, et accessible par visioconférence aux étudiants hors de Montréal. Nous débuterons avec les concepts de base et terminerons avec les invariants de Gromov-Witten, la cohomologie quantique et les conjectures récentes.