Probabilités

Description du programme

La théorie des probabilités est l’étude mathématique des phénomènes caractérisés par le hasard et l’incertitude. Les spécialistes de cette discipline au sein de l’ISM s’intéressent à un large éventail de problèmes théoriques et appliqués où les probabilités discrètes et continues ont un rôle à jouer. Leurs travaux concernent notamment le développement et l’analyse de modèles probabilistes pour des phénomènes physiques, biologiques, statistiques et informatiques. Ils étudient entre autres la physique statistique dans un environnement aléatoire, les processus évolutifs en biologie, les systèmes à portée variable, les paysages énergétiques aléatoires, l’analyse de la structure de données au moyen d’arborescences aléatoires, la génétique et la biologie des populations.

Plusieurs membres du groupe font également partie du laboratoire de probabilités du CRM.

Membres du programme

Formation

Les étudiants intéressés à poursuivre leurs études graduées dans l'un ou l'autre des domaines mentionnés ci-dessus sont invités s'inscrire au programme. Il n'y a pas de prérequis spécifiques autres que ceux exigés par chaque département. Cependant les recommandations suivantes devraient être suivies et les cours devraient être choisis en consultation avec un professeur appartenant au groupe responsable du programme.

Les étudiants intégrés au programme devraient maîtriser les fondements de la théorie des probabilités. Ces étudiants devront prendre les cours intermédiaires suivants: théorie de la mesure et théorie des probabilités. Ils devront ensuite suivre des cours spécialisés.

Cours 2024-25

Automne

Probability Theory

This course covers most of the materials in the first seven chapters of Probability and Random Processes by Grimmett and Stirzaker.  In particular, it covers topics such as generating and characteristic functions and their applications in random walk and branching process, different modes of convergence and an introduction of martingales.

Prof. Xiaowen Zhou

MAST 671/2 sec. B / 881B

Institution: Concordia University

Advanced Probability Theory 1

Probability spaces. Random variables and their expectations. Convergence of random variables in Lp. Independence and conditional expectation. Introduction to Martingales. Limit theorems including Kolmogorov's Strong Law of Large Numbers.

Prof. Louigi Addario-Berry

MATH 587

Institution: Université McGill

Probabilités (UdeM)

Espace de probabilité, variables aléatoires, indépendance, espérance mathématique, modes de convergence, lois des grands nombres, théorème central limite, espérance conditionnelle et martingales. Introduction au mouvement brownien.

Prof. Alexander Fribergh

MAT 6701

Institution: Université de Montréal

Mesure et probabilités

Tribus et variables aléatoires. Théorie de l'intégration: théorème de Lebesgue, espace Lp, théorème de Fubini. Construction de mesures, mesure de Radon. Indépendance. Conditionnement.

 

Prof. Hélène Guérin

MAT 7070

Institution: Université du Québec à Montréal

Topics in Probability and Statistics / Advanced Topics in Probability: Random Graph Processes

This course will introduce a range of random graph processes and of random processes on graphs. I intend to cover the following models and topics, time permitting.

  • The Erdös-Rényi process (phase transition, critical behaviour, fractal structure)
  • Controlled random graph processes (delaying the arrival of the giant); the differential equation method
  • Lattice models: Percolation, Ising model, Potts model, random matchings, random independent sets
  • Glauber dynamics for sampling
  • Uniform spanning trees: Wilson’s algorithm, matroid basis exchange algorithm
  • Mixing time, cutoff and curvature
  • Interacting particle systems: voter models, majority dynamics
  • Network growth and network archaeology

Prof. Louigi Addario-Berry

MATH 598 / MATH 784

Institution: Université McGill

Hiver

Stochastic Processes (McGill)

Conditional probability and conditional expectation, generating functions. Branching processes and random walk. Markov chains:transition matrices, classification of states, ergodic theorem, examples. Birth and death processes, queueing theory.

Prof. Elliot Paquette

MATH 547

Institution: Université McGill

Advanced Probability Theory 2

Characteristic functions: elementary properties, inversion formula, uniqueness, convolution and continuity theorems. Weak convergence. Central limit theorem. Additional topic(s) chosen (at discretion of instructor) from: Martingale Theory; Brownian motion, stochastic calculus.

Prof. Linan Chen

MATH 589

Institution: Université McGill

Calcul stochastique

Mouvement brownien, intégrale stochastique, formule d’Itô, équations différentielles stochastiques, théorèmes de représentation, théorème de Girsanov. Formule de Black et Scholes.

Prof. Lucas Benigni

MAT 6703

Institution: Université de Montréal

Méthodes stochastiques en finance 1

Ce cours est une introduction au calcul stochastique pour les applications en finance mathématique:
1. Rappels de théorie des probabilités
2. Mouvement brownien et martingales
3. Intégration stochastique par rapport au mouvement brownien
4. Applications de la Formule d’Itô et Théorèmes de Girsanov
5. Équations différentielles stochastiques et processus de diffusion
6. Si le temps le permet : Introduction à la finance mathématique et au modèle de Black-Scholes-Merton, tarification d’options vanilles et d’options exotiques

Prof. Jean-François Renaud

MAT 8601

Institution: Université du Québec à Montréal