Les intérêts de recherche des membres du groupe couvrent plusieurs domaines connexes dont systèmes dynamiques et équations différentielles avec retard; la mécanique des fluides et des milieux continus; la physique des matériaux, les transitions de phase et la croissance des cristaux; les méthodes numériques en dynamique des fluides et l'analyse asymptotique; l'optimisation de forme et de structure; et le contrôle des équations aux dérivées partielles.
Deux centres de recherche sont affiliés au groupe:
L'objectif de ce programme est de donner une formation moderne en mathématiques orientée vers les applications et l'utilisation de l'ordinateur comme outil d'analyse, d'optimisation et de contrôle de systèmes physiques et technologiques. Ce programme accueille des étudiants avec des formations solides (allant de la physique et du génie aux mathématiques) qui désirent travailler dans le domaine des équations aux dérivées partielles et de leurs applications. Le spectre du programme est assez large pour accommoder aussi bien le développement de logiciels ou la modélisation physique que des sujets fins d'analyse fonctionnelle ou d'équations aux dérivées partielles.
L'intention est d'associer les étudiants aux activités de groupes de recherche locaux, gouvernementaux ou industriels, comme par exemple l'Agence Spatiale Canadienne ou d'autres organisations avec lesquelles des membres du groupe responsable du programme sont ou ont été impliqués.
Le programme couvre plusieurs domaines connexes dont:
Il n'y a pas de prérequis spécifiques autres que ceux exigés par chaque département. Cependant il est fortement conseillé de choisir les cours en consultation avec un professeur appartenant au groupe responsable du programme et de tenir compte des recommandations suivantes.
L'évolution future et la formalisation du programme se feront dans le cadre décrit ci-dessus. Celui-ci est assez large pour éventuellement permettre l'ajout de nouveaux thèmes selon les besoins.
This course will cover the theory of differential equations from a rigorous graduate mathematics perspective. Topics related to ordinary differential equations to be covered include proving existence and uniqueness for nonlinear systems, examining linear systems, fundamental solutions, equilibria, periodic solutions, stability, invariant manifolds, and hyperbolic theory. We will be introduced to important theorems that underscore the discipline such as Floquet’s theorem, the Hartman-Grobman theorem, and the stable and centre manifold theorems. The final weeks of the course will be dedicated to boundary value problems and Sturm-Liouville theory.
This course introduces the mathematical foundations of data science. Topics covered tentatively include machine learning basics, rudiments of statistical learning theory, optimal recovery, compressive sensing, elements of optimization theory and deep learning. Although the course will focus on theoretical aspects, it will also include computational illustrations. We will primarily follow the book "Mathematical Pictures at a Data Science Exhibition" by S. Foucart (Cambridge University Press, 2022). The course will include a final individual research project.
Algorithmic and structural approaches in combinatorial optimization with a focus upon theory and applications. Topics include: polyhedral methods, network optimization, the ellipsoid method, graph algorithms, matroid theory and submodular functions.
Development, analysis and effective use of numerical methods to solve problems arising in applications. Topics include direct and iterative methods for the solution of linear equations (including preconditioning), eigenvalue problems, interpolation, approximation, quadrature, solution of nonlinear systems.
Classification and wellposedness of linear and nonlinear partial differential equations; energy methods; Dirichlet principle. Brief introduction to distributions; weak derivatives. Fundamental solutions and Green's functions for Poisson equation, regularity, harmonic functions, maximum principle. Representation formulae for solutions of heat and wave equations, Duhamel's principle. Method of Characteristics, scalar conservation laws, shocks.
Processus de modélisation mathématiques avancés : simulations, estimation de paramètres, interprétation. Utilisation des mathématiques dans un milieu multidisciplinaire (p. ex. oncologie, neurosciences, génétique). Étude de cas et projets appliqués.
The formulation and treatment of realistic mathematical models describing biological phenomena through such qualitative and quantitative mathematical techniques as local and global stability theory, bifurcation analysis, phase plane analysis, and numerical simulation. Concrete and detailed examples will be drawn from molecular, cellular and population biology and mammalian physiology.
Convex sets and functions, subdifferential calculus, conjugate functions, Fenchel duality, proximal calculus. Subgradient methods, proximal-based methods. Conditional gradient method, ADMM. Applications including data classification, network-flow problems, image processing, convex feasibility problems, DC optimization, sparse optimization, and compressed sensing.
Virgule flottante. ÉDOs. Méthodes directes et itératives pour la résolution de systèmes linéaires et non-linéaires. Valeurs propres. ÉDPs elliptiques et paraboliques. Équation de Black-Scholes. Optimisation sans contraintes (MAT 6473 uniquement), Décomposition en valeurs singulières (SVD, MAT 6473 uniquement).