Mathématiques appliquées et calcul scientifique

Description du programme

Les intérêts de recherche des membres du groupe couvrent plusieurs domaines connexes dont systèmes dynamiques et équations différentielles avec retard; la mécanique des fluides et des milieux continus; la physique des matériaux, les transitions de phase et la croissance des cristaux; les méthodes numériques en dynamique des fluides et l'analyse asymptotique; l'optimisation de forme et de structure; et le contrôle des équations aux dérivées partielles.

Deux centres de recherche sont affiliés au groupe:

Membres du programme

Formation

L'objectif de ce programme est de donner une formation moderne en mathématiques orientée vers les applications et l'utilisation de l'ordinateur comme outil d'analyse, d'optimisation et de contrôle de systèmes physiques et technologiques. Ce programme accueille des étudiants avec des formations solides (allant de la physique et du génie aux mathématiques) qui désirent travailler dans le domaine des équations aux dérivées partielles et de leurs applications. Le spectre du programme est assez large pour accommoder aussi bien le développement de logiciels ou la modélisation physique que des sujets fins d'analyse fonctionnelle ou d'équations aux dérivées partielles.

L'intention est d'associer les étudiants aux activités de groupes de recherche locaux, gouvernementaux ou industriels, comme par exemple l'Agence Spatiale Canadienne ou d'autres organisations avec lesquelles des membres du groupe responsable du programme sont ou ont été impliqués.

Le programme couvre plusieurs domaines connexes dont:

  • systèmes dynamiques et équations différentielles avec retard.
  • la mécanique des fluides et des milieux continus.
  • la physique des matériaux, les transitions de phase et la croissance des cristaux.
  • les méthodes numériques en dynamique des fluides et l'analyse asymptotique.
  • l'optimisation de forme et de structure.
  • le contrôle des équations aux dérivées partielles.

Il n'y a pas de prérequis spécifiques autres que ceux exigés par chaque département. Cependant il est fortement conseillé de choisir les cours en consultation avec un professeur appartenant au groupe responsable du programme et de tenir compte des recommandations suivantes.

  1. Tous les étudiants devraient prendre des cours d'équations aux dérivées partielles: par exemple les cours MATH 580 et MATH 581 à McGill et MAT 6110 à l'U de M.
  2. Il est essentiel pour la plupart (et désirable pour tous) de développer ses aptitudes au calcul scientifique en suivant des cours pertinents en analyse numérique. Au delà des cours d'introduction principalement au premier cycle, les cours essentiels portent sur le calcul scientifique (MATH 578 à McGill et MAT 6470 à l'U de M), les équations numériques différentielles (MATH 579 à McGill) les méthodes aux différences finies (MAT 6165 à l'U de M), les méthodes d'éléments finis (MTH 6206/7 à Polytechnique et le cours de MAT 6450 à l'U de M).
  3. Les étudiants devraient acquérir des connaissances dans les domaines proches de la physique comme la mécanique des fluides, celle des milieux continus, la thermodynamique, etc. Les cours visés portent les sigles MATH 555 à McGill et MAT 6150 à l'U de M; les départements de physique et de génie offrent aussi d'autres cours pertinents.
  4. Les étudiants en mécanique des fluides ou sciences des matériaux devraient suivre un cours en méthodes asymptotiques et en méthodes de perturbation (MATH 651 à McGill ou MTH 6506 à Polytechnique).
  5. Les étudiants qui désirent travailler en optimisation de formes ou en contrôle devraient prendre au moins un cours en optimisation. Les cours suivants sont donnés régulièrement : MATH 560 à McGill; MAT 6428, MAT 6439 (Optimisation et contrôle), MAT 6441 (Analyse et optimisation de forme) à l'U de M; MTH 6403 et MTH 6408 à Polytechnique.
  6. Les étudiants qui désirent travailler en optimisation de formes ou en contrôle des équations aux dérivées partielles devront acquérir des connaissances en analyse mathématique et en analyse fonctionnelle.

L'évolution future et la formalisation du programme se feront dans le cadre décrit ci-dessus. Celui-ci est assez large pour éventuellement permettre l'ajout de nouveaux thèmes selon les besoins.

Cours 2024-25

Automne

Advanced Differential Equations

This course will cover the theory of differential equations from a rigorous graduate mathematics perspective. Topics related to ordinary differential equations to be covered include proving existence and uniqueness for nonlinear systems, examining linear systems, fundamental solutions, equilibria, periodic solutions, stability, invariant manifolds, and hyperbolic theory. We will be introduced to important theorems that underscore the discipline such as Floquet’s theorem, the Hartman-Grobman theorem, and the stable and centre manifold theorems. The final weeks of the course will be dedicated to boundary value problems and Sturm-Liouville theory.

Prof. Jason Bramburger

MAST 661/2 sec. O / 837O)

Institution: Concordia University

Mathematics of Data Science

This course introduces the mathematical foundations of data science. Topics covered tentatively include machine learning basics, rudiments of statistical learning theory, optimal recovery, compressive sensing, elements of optimization theory and deep learning. Although the course will focus on theoretical aspects, it will also include computational illustrations. We will primarily follow the book "Mathematical Pictures at a Data Science Exhibition" by S. Foucart (Cambridge University Press, 2022). The course will include a final individual research project.

Prof. Simone Brugiapaglia

MAST 679/2 sec. DS /881DS

Institution: Concordia University

Combinatorial Optimization

Algorithmic and structural approaches in combinatorial optimization with a focus upon theory and applications. Topics include: polyhedral methods, network optimization, the ellipsoid method, graph algorithms, matroid theory and submodular functions.

Prof. Adrian Vetta

MATH 552

Institution: Université McGill

Numerical Analysis 1

Development, analysis and effective use of numerical methods to solve problems arising in applications. Topics include direct and iterative methods for the solution of linear equations (including preconditioning), eigenvalue problems, interpolation, approximation, quadrature, solution of nonlinear systems.

Prof. Jean-Christophe Nave

MATH 578

Institution: Université McGill

Advanced Partial Differential Equations 1

Classification and wellposedness of linear and nonlinear partial differential equations; energy methods; Dirichlet principle. Brief introduction to distributions; weak derivatives. Fundamental solutions and Green's functions for Poisson equation, regularity, harmonic functions, maximum principle. Representation formulae for solutions of heat and wave equations, Duhamel's principle. Method of Characteristics, scalar conservation laws, shocks.

Prof. Jérôme Vétois

MATH 580

Institution: Université McGill

Modélisation mathématique et applications

Processus de modélisation mathématiques avancés : simulations, estimation de paramètres, interprétation. Utilisation des mathématiques dans un milieu multidisciplinaire (p. ex. oncologie, neurosciences, génétique). Étude de cas et projets appliqués.

Prof. David McLeod

MAT 6465

Institution: Université de Montréal

Hiver

Honours Mathematical Models in Biology

The formulation and treatment of realistic mathematical models describing biological phenomena through such qualitative and quantitative mathematical techniques as local and global stability theory, bifurcation analysis, phase plane analysis, and numerical simulation. Concrete and detailed examples will be drawn from molecular, cellular and population biology and mammalian physiology.

Prof. Anmar Khadra

MATH 537

Institution: Université McGill

Honours Convex Optimization

Convex sets and functions, subdifferential calculus, conjugate functions, Fenchel duality, proximal calculus. Subgradient methods, proximal-based methods. Conditional gradient method, ADMM. Applications including data classification, network-flow problems, image processing, convex feasibility problems, DC optimization, sparse optimization, and compressed sensing.

Prof. Courtney Paquette

MATH 563

Institution: Université McGill

Advanced Topics in Discrete Mathematics

Prof. Sergey Norin

MATH 758

Institution: Université McGill

Advanced Topics in Applied Mathematics 2

Prof. Jean-Philippe Lessard

MATH 762

Institution: Université McGill

Calcul scientifique

Virgule flottante. ÉDOs. Méthodes directes et itératives pour la résolution de systèmes linéaires et non-linéaires. Valeurs propres. ÉDPs elliptiques et paraboliques. Équation de Black-Scholes. Optimisation sans contraintes (MAT 6473 uniquement), Décomposition en valeurs singulières (SVD, MAT 6473 uniquement).

Prof. Robert G. Owens

MAT 6473

Institution: Université de Montréal