Les intérêts de recherche des membres du groupe couvrent plusieurs domaines connexes dont systèmes dynamiques et équations différentielles avec retard; la mécanique des fluides et des milieux continus; la physique des matériaux, les transitions de phase et la croissance des cristaux; les méthodes numériques en dynamique des fluides et l'analyse asymptotique; l'optimisation de forme et de structure; et le contrôle des équations aux dérivées partielles.
Deux centres de recherche sont affiliés au groupe:
L'objectif de ce programme est de donner une formation moderne en mathématiques orientée vers les applications et l'utilisation de l'ordinateur comme outil d'analyse, d'optimisation et de contrôle de systèmes physiques et technologiques. Ce programme accueille des étudiants avec des formations solides (allant de la physique et du génie aux mathématiques) qui désirent travailler dans le domaine des équations aux dérivées partielles et de leurs applications. Le spectre du programme est assez large pour accommoder aussi bien le développement de logiciels ou la modélisation physique que des sujets fins d'analyse fonctionnelle ou d'équations aux dérivées partielles.
L'intention est d'associer les étudiants aux activités de groupes de recherche locaux, gouvernementaux ou industriels, comme par exemple l'Agence Spatiale Canadienne ou d'autres organisations avec lesquelles des membres du groupe responsable du programme sont ou ont été impliqués.
Le programme couvre plusieurs domaines connexes dont:
Il n'y a pas de prérequis spécifiques autres que ceux exigés par chaque département. Cependant il est fortement conseillé de choisir les cours en consultation avec un professeur appartenant au groupe responsable du programme et de tenir compte des recommandations suivantes.
L'évolution future et la formalisation du programme se feront dans le cadre décrit ci-dessus. Celui-ci est assez large pour éventuellement permettre l'ajout de nouveaux thèmes selon les besoins.
Foundations of game theory. Computation aspects of equilibria. Theory of auctions and modern auction design. General equilibrium theory and welfare economics. Algorithmic mechanism design. Dynamic games.
Development, analysis and effective use of numerical methods to solve problems arising in applications. Topics include direct and iterative methods for the solution of linear equations (including preconditioning), eigenvalue problems, interpolation, approximation, quadrature, solution of nonlinear systems.
Classification and wellposedness of linear and nonlinear partial differential equations; energy methods; Dirichlet principle. Brief introduction to distributions; weak derivatives. Fundamental solutions and Green's functions for Poisson equation, regularity, harmonic functions, maximum principle. Representation formulae for solutions of heat and wave equations, Duhamel's principle. Method of Characteristics, scalar conservation laws, shocks.
Examen de modèles fondamentaux utilisés en biologie mathématique et de leur analyse utilisant des outils modernes de calcul scientifique. Systèmes dynamiques discrets et continus, procédés stochastiques, modèles statistiques et simulation numérique.
Formulation et modélisation analytique des géométries intrinsèques de données. Algorithmes pour les construire et les utiliser en apprentissage automatique. Applications : classification, regroupement et réduction de la dimensionnalité.
The formulation and treatment of realistic mathematical models describing biological phenomena through such qualitative and quantitative mathematical techniques as local and global stability theory, bifurcation analysis, phase plane analysis, and numerical simulation. Concrete and detailed examples will be drawn from molecular, cellular and population biology and mammalian physiology.
Concentration inequalities, PAC model, VC dimension, Rademacher complexity, convex optimization, gradient descent, boosting, kernels, support vector machines, regression and learning bounds. Further topics selected from: Gaussian processes, online learning, regret bounds, basic neural network theory.
Convex sets and functions, subdifferential calculus, conjugate functions, Fenchel duality, proximal calculus. Subgradient methods, proximal-based methods. Conditional gradient method, ADMM. Applications including data classification, network-flow problems, image processing, convex feasibility problems, DC optimization, sparse optimization, and compressed sensing.
Processus de branchement : modèles de Wright-Fisher, de Moran. Modèles à une infinité d’allèles, de sites. Facteurs d’évolution: sélection, mutation, migration, recombinaison, apparentement. Reconstruction et inférence de réseaux génétiques.
Virgule flottante. ÉDOs. Modélisation et simulations. Méthodes directes et itératives pour la résolution de systèmes linéaires et non-linéaires. Optimisation sans contraintes. Valeurs propres. Décomposition en valeurs singulières. ÉDPs elliptiques et paraboliques. Équation de Black-Scholes.