The analysis group is affiliated with the CRM Mathematical Analysis Laboratory which organizes many scientific events. Current research interests of the members of this group may be roughly classified under the following headings:
This program is designed to introduce students to research in the broad area of analysis, ranging from classical analysis to modern analysis, with applications in such fields as geometry, mathematical physics, number theory, and statistics.
It is very important for students interested in the analysis program to follow one of the following sequences of introductory graduate level analysis courses. These courses provide the necessary preparation for the more advanced courses offered by the program.
Measure Theory (Concordia MAST 669)
Functional Analysis I (Concordia MAST 662)
or
Advanced Real Analysis I (McGill MATH-564)
Advanced Real Analysis II (McGill MATH-565)
Advanced Complex Analysis (McGill MATH-566)
or
Mesure et intégration (Université de Montréal MAT 6111)
Analyse fonctionnelle (Université de Montréal MAT 6112)
Topologie générale (Université de Montréal MAT 6310)
Analyse complexe: sujets spéciaux (Université de Montréal MAT 6182K)
or
Analyse fonctionnelle I (Laval MAT-7100)
Théorie de la mesure et intégration (Laval MAT-6000)
Équations aux derivées partielles (Laval MAT-7220)
Topics include Lebesgue measure, measurable sets and functions; Lebesgue integral; Differentiation and integration; Lebesgue (Lp) spaces; Additional topics may be covered if time permits.
Introduction : explication des raisons de l'introduction de l'intégrale de Lebesgue. Espaces mesurables. Intégrale : intégrale des fonctions simples, extension, théorème de convergence monotone, théorème de Fatou. Fonctions intégrales. Exemples classiques (Lebesgue, Lebesgue-Stieltjes, etc.). Théorème de la convergence dominée. Modes de convergence. Décompositions des mesures. Produits de mesures : théorèmes de Tonelli et Fubini. Théorème de Riesz et de Radon-Nicodym.
Ce cours porte sur les méthodes classiques de résolution des équations aux dérivées partielles« : équations du premier ordre, caractéristiques, théorie de Hamilton Jacobi, classification des équations du second ordre, fonctions de Green, méthode de Riemann, etc.
Abstract theory of measure and integration: Borel-Cantelli lemmas, regularity of measures, product measures, Fubini-Tonelli theorem, signed measures, Hahn and Jordan decompositions, Radon-Nikodym theorem, differentiation in Rn.
Ensembles mesurables, mesure de Lebesgue, théorèmes de Lusin et de Egorov, intégrale de Lebesgue, théorème de Fubini, espaces Lp, éléments de la théorie ergodique, mesure et dimension de Hausdorff, ensembles fractals.
Équations des ondes et de la chaleur, problème de Sturm-Liouville, théorie des distributions, espaces de Sobolev, fonctions harmoniques, équations elliptiques, éléments de la théorie spectrale.
The course will introduce students to the theory of classical harmonic analysis: convergence of Fourier series on the circle; Fourier transforms on the line and in Euclidean space; the Schwartz space and tempered distributions; and the Poisson Summation Formula. It will also cover applications to PDE; the Shannon Sampling Theorem; the discrete Fourier transform and Fast Fourier Transform; wavelets and frames.
The course is planned to consist of two parts: a short and condensed survey of the basic concepts of the theory of functions of one complex variable (from the Cauchy formula to the Riemann theorem on conformal mapping) and an introduction to the theory of compact Riemann surfaces (from elliptic functions to Abel and Riemann-Roch theorems; the latter will be introduced as a very special case of the index theorem).
The course is an introduction to the classical theory of partial differential equations (PDEs). The topics presented will be: first order linear and quasi-linear equations; linear second order PDEs (Laplace, Heat, Wave equations), maximum principles, properties of harmonic functions, accompanied by guided independent study, based on individual mathematical interests and areas of study, in which graduate students will explore further topics chosen from: nonlinear elliptic and parabolic PDEs (geometric properties of solutions, gradient flows, methods of subsolutions and supersolutions), or the use of calculus of variations and fixed point methods.
Review of the basic theory of Banach and Hilbert spaces, Lp spaces, open mapping theorem,closed graph theorem, Banach-Steinhaus theorem, Hahn-Banach theorem, weak and weak-* convergence, weak convergence of measures, Riesz representation theorems, spectral theorem for compact self-adjoint operators, Fredholm theory, spectral theorem for bounded self-adjoint operators, Fourier series and integrals, additional topics.
Espaces de Sobolev. Algèbres de Banach, théorème de Gelfand. Théories spectrales d’opérateurs bornés. Opérateurs non bornés, transformée de Cayley.
Espaces de Hilbert, espaces de Banach, algèbres de Banach. Étude particulière de l'algèbre des opérateurs sur un espace de Hilbert. Espace de Banach des fonctions à variation bornée et intégrale de Stieltjes. Fonctionnelles linéaires. Théorème de représentation de Riesz. Théorèmes de Hahn-Banach, de la borne uniforme et du graphe fermé. Topologies faibles. Convexité : théorèmes de séparation, inégalité de Jensen, théorème de Krein-Milman.