Analyse

Description du programme

Le regroupement d'analyse est affilié au laboratoire d'analyse mathématique du CRM qui organise un grand nombre d'événements scientifiques. Les intérêts de recherche des membres du groupe peuvent être classifiés grosso modo sous les rubriques suivantes :

  • Analyse sur les variétés : la géométrie spectrale (valeurs propres et fonctions propres des Laplaciens), le chaos quantique.
  • Analyse classique
  • Analyse complexe : approximation complexe, les groupes discrets à deux générateurs, la dynamique complexe, l’analyse à plusieurs variables complexes et les multifonctions analytiques.
  • Théorie ergodique : la théorie spectrale des transformations qui préservent la mesure, les résultats de type Baire en théorie ergodique et les généralisations des théorèmes ergodiques aux suites de projections généralisées.
  • Analyse fonctionnelle : les algèbres de Banach, les résolvantes et la contrôlabilité des opérateurs, le théorème spectral généralisé et les suites d’opérateurs auto-adjoints et leurs limites faibles, l’analyse des matrices et les inégalités, la théorie spectrale et la physique mathématique.
  • Analyse harmonique : les séries trigonométriques, les formes automorphes, les intégrales singulières, les transformées de Fourier, les opérateurs multiplicateurs, la théorie de Littlewood-Paley, les fonctions harmoniques sur Rn, les espaces de Hardy, les fonctions carrées, les liens entre l’analyse harmonique et la théorie des probabilités et la théorie ergodique.
  • Équations aux dérivées partielles : les liens avec l’analyse fonctionnelle, géométrique et harmonique.
  • Théorie du potentiel : la dualité dans la théorie du potentiel, l’approximation harmonique, le comportement aux frontières et la théorie du potentiel sur les arbres.

Membres du programme

Formation

Ce programme vise à initier les étudiants et les étudiantes à la recherche en analyse, en allant de l’analyse classique à l’analyse moderne, avec des applications à des domaines tels la géométrie, la physique mathématique, la théorie des nombres et la statistique.

Prérequis:

Il est très important que les étudiants et étudiantes qui s’intéressent au programme d’analyse suivent une des séries de cours d’introduction à l’analyse qui suivent. Ces cours donnent la préparation nécessaire pour les cours plus avancés offerts dans le cadre du programme.

  • Measure Theory (Concordia MAST 669)
    Functional Analysis I (Concordia MAST 662)
  • ou
  • Advanced Real Analysis I (McGill MATH-564)
    Advanced Real Analysis II (McGill MATH-565)
    Advanced Complex Analysis (McGill MATH-566)
  • ou
  • Mesure et intégration (Université de Montréal MAT 6111)
    Analyse fonctionnelle (Université de Montréal MAT 6112)
    Topologie générale (Université de Montréal MAT 6310)
    Analyse complexe: sujets spéciaux (Université de Montréal MAT 6182K)
  • ou
  • Analyse fonctionnelle I (Laval MAT-7100)
    Théorie de la mesure et intégration (Laval MAT-6000)
    Équations aux derivées partielles (Laval MAT-7220)

Cours 2025-26

Automne

Measure Theory

Topics include Lebesgue measure, measurable sets and functions; Lebesgue integral; Differentiation and integration; Lebesgue (Lp) spaces; Additional topics may be covered if time permits.

Prof. Maria Ntekoume

MAST 669/2 sec. D / 837D

Institution: Concordia University

Théorie de la mesure et intégration

Introduction : explication des raisons de l'introduction de l'intégrale de Lebesgue. Espaces mesurables. Intégrale : intégrale des fonctions simples, extension, théorème de convergence monotone, théorème de Fatou. Fonctions intégrales. Exemples classiques (Lebesgue, Lebesgue-Stieltjes, etc.). Théorème de la convergence dominée. Modes de convergence. Décompositions des mesures. Produits de mesures : théorèmes de Tonelli et Fubini. Théorème de Riesz et de Radon-Nicodym.

Prof. Jérémie Rostand

MAT 6005

Institution: Université Laval

Équations aux dérivées partielles - Université Laval

Ce cours porte sur les méthodes classiques de résolution des équations aux dérivées partielles« : équations du premier ordre, caractéristiques, théorie de Hamilton Jacobi, classification des équations du second ordre, fonctions de Green, méthode de Riemann, etc. 

Prof. Félix Kwok

MAT 7225

Institution: Université Laval

Real Analysis and Measure Theory

Abstract theory of measure and integration: Borel-Cantelli lemmas, regularity of measures, product measures, Fubini-Tonelli theorem, signed measures, Hahn and Jordan decompositions, Radon-Nikodym theorem, differentiation in Rn.

Prof. Anush Tserunyan

MATH 564

Institution: Université McGill

Mesure et intégration

Ensembles mesurables, mesure de Lebesgue, théorèmes de Lusin et de Egorov, intégrale de Lebesgue, théorème de Fubini, espaces Lp, éléments de la théorie ergodique, mesure et dimension de Hausdorff, ensembles fractals.

Prof. Maxime Fortier Bourque

MAT 6117

Institution: Université de Montréal

Équations aux dérivées partielles - Université de Montréal

Équations des ondes et de la chaleur, problème de Sturm-Liouville, théorie des distributions, espaces de Sobolev, fonctions harmoniques, équations elliptiques, éléments de la théorie spectrale.


 

Prof. Iosif Polterovich

MAT 6220

Institution: Université de Montréal

Hiver

Topics in Analysis: Harmonic analysis and applications

The course will introduce students to the theory of classical harmonic analysis: convergence of Fourier series on the circle; Fourier transforms on the line and in Euclidean space; the Schwartz space and tempered distributions; and the Poisson Summation Formula. It will also cover applications to PDE; the Shannon Sampling Theorem; the discrete Fourier transform and Fast Fourier Transform; wavelets and frames.

 

Prof. Galia Dafni

MAST 661/4 sec. B/ 837B

Institution: Concordia University

Complex Analysis

The course is planned to consist of two parts: a short and condensed survey of the basic concepts of the theory of functions of one complex variable (from the Cauchy formula to the Riemann theorem on conformal mapping) and an introduction to the theory of compact Riemann surfaces (from elliptic functions to Abel and Riemann-Roch theorems; the latter will be introduced as a very special case of the index theorem).

Prof. Marco Bertola

MAST 665/4, sec. W /MAST 837W

Institution: Concordia University

Partial Differential Equations

The course is an introduction to the classical theory of partial differential equations (PDEs). The topics presented will be: first order linear and quasi-linear equations; linear second order PDEs (Laplace, Heat, Wave equations), maximum principles, properties of harmonic functions, accompanied by guided independent study, based on individual mathematical interests and areas of study, in which graduate students will explore further topics chosen from: nonlinear elliptic and parabolic PDEs (geometric properties of solutions, gradient flows, methods of subsolutions and supersolutions), or the use of calculus of variations and fixed point methods.

Prof. Alina Stancu

MAST 666/4 sec. A / 841A

Institution: Concordia University

Functional Analysis

Review of the basic theory of Banach and Hilbert spaces, Lp spaces, open mapping theorem,closed graph theorem, Banach-Steinhaus theorem, Hahn-Banach theorem, weak and weak-* convergence, weak convergence of measures, Riesz representation theorems, spectral theorem for compact self-adjoint operators, Fredholm theory, spectral theorem for bounded self-adjoint operators, Fourier series and integrals, additional topics.

Prof. Anush Tserunyan

MATH 565

Institution: Université McGill

Analyse fonctionnelle avancée

Espaces de Sobolev. Algèbres de Banach, théorème de Gelfand. Théories spectrales d’opérateurs bornés. Opérateurs non bornés, transformée de Cayley.

Prof. Dmitry Faifman

MAT 6125

Institution: Université de Montréal

Analyse fonctionnelle (Sherbrooke)

Espaces de Hilbert, espaces de Banach, algèbres de Banach. Étude particulière de l'algèbre des opérateurs sur un espace de Hilbert. Espace de Banach des fonctions à variation bornée et intégrale de Stieltjes. Fonctionnelles linéaires. Théorème de représentation de Riesz. Théorèmes de Hahn-Banach, de la borne uniforme et du graphe fermé. Topologies faibles. Convexité : théorèmes de séparation, inégalité de Jensen, théorème de Krein-Milman.

Prof.

MAT 745

Institution: Université de Sherbrooke