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INTRODUCTION

The conclusions of a regression analysis rely on a number of fundamental assumptions.
One such assumption is that the model is correctly specified; the validity of all
inferences from any analysis is dependent upon the extent to which these assumptions
are met. Any violation of the necessary assumptions can result in bias caused by
systematic error, i.e. error that cannot be reduced by increasing the number of
observation units. Most epidemiological studies do not quantify bias in their results as
many current methods are too complicated, expensive (because, for example, they
require collection of additional data), or hard to understand. However, statisticians can
use sensitivity analysis techniques to quantify the effect of a hypothesized unmeasured
confounder and may then adjust the conclusions of the analysis accordingly. To do this
the researcher must make assumptions about certain characteristics regarding the
hypothesized unmeasured confounder. Sensitivity analysis techniques can be local

(using a cost function and point parameter estimation) or global (exploring the design



space using a representative set of samples and varying parameter estimates). The
more valid assumptions a statistician can make in their analysis, the more precise the
results will be.

This paper will propose and evaluate a method for implementing a sensitivity
analysis for the violation of the assumption of no unmeasured confounders. It will
explore a global Monte Carlo based approach, varying inputs and parameter estimates,
to quantify the robustness of the original analysis to the violation of the assumption of
no unmeasured confounders. The first section will describe the existing sensitivity
analysis approaches for the violation of the assumption of no unmeasured confounders.
These methods range from simple point estimates based on sensitivity parameters, to
Bayesian and Monte Carlo approaches. The second section describes the proposed

method and evaluates its performance via a simple simulation study.

A BRIEF SURVEY OF THE LITERATURE

Background

Publications were reviewed that used sensitivity analysis methods to calculate bias due
to unmeasured confounders in a study. The key publications are described below and

summarized in Table 1.

Local Analysis
The early papers on sensitivity analysis of unmeasured confounding utilize a local

sensitivity analysis method, yielding a point estimate. These papers estimated bias



using informed assumptions about potential confounders combined with the study’s
data. Most of the early studies assume a single exposure and a single confounder.
Later publications generalize this method?®®.

In 1978 Schelessman conducted a study!" that utilizes local sensitivity analysis
techniques. This method assumes only three factors (exposure, disease, and one
confounding variable) and uses odds ratios and external information about a suspected
confounder to calculate a point estimate of bias caused by unmeasured confounding.
Similarly, Gail et al.®! utilize a crude relative risk term and Flanders et al.'% use a
confounding risk ratio to quantify bias (See Table 1).

Schneeweiss et al.’! describe a more complex implementation of this method.
Here, the authors used informed assumptions about the hypothesized unmeasured
confounder(s), combined with an analysis of the residual confounding that would have
been necessary to explain the study results, to quantify the amount of bias present in
the original analysis. This method uses a confounded relative risk (RR) term, which is
also referred to as an “apparent’” RR. This term depends on certain sensitivity
parameters, which can be estimated/adjusted to explore effects. Using this method, a
researcher can create an educated point estimate of bias in a fairly simple manner; that
is, without an unreasonable amount of technical understanding. However, this method
does not create a confidence interval for the bias, which researchers may find useful.
Breslow et al.®! also write about a confounded relative risk term in chapter 3 of their

1980 publication. This confounding risk ratio is given as the ratio of the crude odds ratio



to the post stratification odds ratio. If the confounding risk ratio is one, then there is no
confounding present.

VanderWheele et al.*! describe another method that uses the potential outcomes
framework to assess the magnitude of bias caused by unmeasured confounding. The
potential outcomes framework assumes a counterfactual world where the exposure is
not present to determine its outcome. Here, the authors derive a general class of
formulas for sensitivity analysis of uncontrolled confounding that can be simplified with
further assumptions. This again presents a method to calculate a point estimate of bias

in observational studies.

Bayesian and Monte Carlo Sensitivity Analysis

More recent publications on the subject describe a more automated approach - in the
form of a Bayesian analysis or a Monte Carlo sensitivity analysis. A Bayesian analysis
involves the declaration of a prior distribution or a class of prior distributions to represent
uncertainties about one or more unmeasured confounders. This information is then
combined with a likelihood model and Bayes’ Theorem is applied to give a posterior
distribution. A Monte Carlo sensitivity analysis, the focus of this paper, compares a
number (in the thousands) of randomly sampled confounding scenarios to repeatedly
estimate the bias. The scenarios can be based on a prior distribution, as in a Bayesian
analysis. Both approaches offer the significant advantage over the local methods
described in the previous section by providing a natural means of computing measures

of variability such as standard errors or confidence intervals.



A 2006 publication by McCandless et al.”! considers a Bayesian sensitivity
analysis for unmeasured confounding. A Bayesian analysis involves the definition of a
prior distribution and a “sampling” from that prior distribution, which in this case is done
via a Markov Chain Monte Carlo approach. Here, they assume that the association
between a binary exposure, a binary response, measured confounders, and a single
binary unmeasured confounder can be formulated via logistic regression models. Since
the model for the unmeasured confounder cannot be identified, the authors elect to use
Markov Chain Monte Carlo approaches to investigate the effect of different priors.

In a study conducted by Steenland et al.l’, the authors provide a method for
discussing the range of bias using either Monte Carlo sensitivity analysis or Bayesian
sensitivity analysis (rather than the traditional point estimates). In conventional
analyses, bias may cause the confidence intervals to be too narrow, shifted upward or
shifted downward. The Monte Carlo analysis is analogous to the Bayesian analysis, yet
is much simpler to implement because it can be accomplished within a more familiar,
frequentist framework. In ordinary sensitivity analysis, external information (or
hypothesized information) is used to estimate the effect of the confounder on the
observed responses. Monte Carlo sensitivity analysis is simply an expanded version of
this method. In the Monte Carlo approach, the authors used 5000 randomly sampled
confounding scenarios to repeatedly estimate the bias factor. In the Bayesian sensitivity
analysis, the authors combined the observed data entered into a data model with prior
distributions for the parameters to derive a posterior distribution for the parameters. This

latter approach is more complicated and difficult to understand compared to the Monte



Carlo version for the classically trained data analyst; thus analysts with frequentist
training may prefer the Monte Carlo approach.

A paper by Phillips et al.l! seeks to quantify the uncertainty introduced by
systematic error. Their approach is to estimate a probability distribution for a
bias-corrected effect based on external information in the form of externally derived
distributions of data. Here, the authors used Monte Carlo simulation to combine multiple
correction for bias. The bias calculations are similar to those in normal sensitivity
analysis, while being a more complete reporting method.

A very simple method of bias calculation would be to calculate a point estimate of
bias necessary for the study to have produced the observed data. This paper refers to
this approach as target-adjustment sensitivity analysis (TASA). An alternative approach
is bias-level sensitivity analysis, which specifies bias parameters and calculates the
resulting adjusted effect. This approach differs from TASA because it calls for forming
beliefs about the probabilities of various states of the world, rather than simply
plausibility.

A study that uses Bayesian Additive Regression Trees (BART) was conducted by
Dorie et al.®! BART is a Markov Chain Monte Carlo method that draws from a
regression function, f, assuming a prior on f and specifying a Markov Chain whose
stationary distribution is the posterior distribution of f. In this study, the sensitivity
parameters are the regression coefficients. The authors assume that a confounder
exists and determine the level of confounding present to drive the naive treatment effect

to zerol/insignificance. The authors make no assumptions about the parameters of the



population distribution(s) from which the data were drawn. This approach removes the
error that may result from misspecification of a distribution, e.g. the errors that result

from parametric tests.

Summary

The conclusions of a regression analysis rely on many assumptions, one of
which is that there are no unmeasured confounders. Literature from 1955 through today
describes many sensitivity analysis methods to calculate bias due to unmeasured
confounders in a study (see Table 1). The older studies focus on point estimates of bias
by varying one or two parameters, usually using odds ratios to calculate these
estimates. These methods certainly cost less (computationally and perhaps also
monetarily) and are easier to understand than a Monte Carlo or Bayesian approach, but
may be less accurate and cannot provide a range, e.g. in the form of a confidence
interval. More modern studies focus on Bayesian and Monte Carlo sensitivity analyses.
A Bayesian analysis requires more distributional assumptions and may be unfamiliar to
analysts following the more traditional frequentists training. An automated Monte Carlo
analysis does not require the same assumptions, but comes with the usual caveats of
interpretation that all frequentist analyses face. This paper will explore a global Monte
Carlo based approach, varying inputs and parameter estimates, to quantify the
robustness of the original analysis to the violation of the assumption of no unmeasured

confounders.



Table 1. Summary of Relevant Literature

Author

Schlesselman,
1978l

Gail et al., 19881

Flanders et al.,
19901

Schneeweiss,
20067

Target of
Estimation

Relative Risk

Crude Relative
Risk

Confounding
Risk Ratio

Confounded
Relative Risk

Parameters
Required

The disease,
study agent,
and confounder
(where each is
considered to
be binary).

External
information on
on the joint
distribution of
confounder and
exposure,
together with
external
information on
the relative risk
of disease due
to the
confounding
factor among
unexposed
individuals.

Prevalence of
the covariate in
the population;
the association
between the
exposure and
the covariate;
and the effect
of the covariate
on disease

External
adjustmentin a
validation study
of the
unmeasured
confounder; or
in the absence
of such
information we
can vary
parameters in a
sensitivity
analysis

Example

Oral contraceptive (OC)
use and smoking status
among controls and
cases of nonfatal
myocardial infarction
(MI) in women under 45
years

Lung cancer rates due
to age confounded by
smoking status

Lung cancer rates due
to occupation
confounded by smoking
status

Associations between
newer sedative
hypnotics and hip
fractures, statin use and
cancer, selective
COX-2 inhibitors and
cardiovascular events,
and anti-TNFa therapy
and lymphatic
malignancies

Conclusions

This method only deals
with dichotomous
variables. In order to
extend these methods,
more information than
was required in this
analysis would be
necessary.

Here the authors assume
a joint model for
exposures and
confounders which must
be explored sufficiently
for reliable results. The
authors also assume a
constant effect of
exposure and
confounder. It may be
impractical to get such
thorough and complete
information about the
confounder.

Practical implementation:
it may not be feasible to
acquire data on the
confounder; This
approach only requires
specification of one or
two parameters; results
can be extended to
incidence rate ratio or to
the odds ratio

Quantitative sensitivity
analysis are easy to
perform (using
spreadsheets); if external
information is available it
may be included to
increase accuracy;
Propensity Score
Calibration can be used
with more than one
confounder present;
must interpret results
cautiously



Author

Breslow et al.,
19808

VanderWeele,
20114

McCandless et al.,

2006

Target of
Estimation

Risk Ratio

General Bias
Formulas;
additive,
risk-ratio and
odds-ratio
scales

Bias
parameters
using a
Bayesian
analysis

Parameters
Required

Cross tabulate
disease against
exposure,
based on
pooling data
over levels of
the confounder

Potential
outcomes
framework: for
each treatment
a, the potential
outcome for an
individual if the
treatment had
not been set to
a

External
information
about
unmeasured
confounding is
incorporated
into the
analysis as
prior
distributions on
bias
parameters.
The posterior
distribution of
the exposure
effect
summarizes
uncertainty due
to unmeasured
confounding in
addition to
random error

Examples

The disease could be
lung cancer, the
exposure some
occupation primarily of
blue-collar workers, and
the confounder
cigarette smoking

A study comparing
coronary artery bypass
surgery to medical
therapy in the treatment
of coronary artery
disease. The outcome
is binary: symptomatic
relief after 6 months.
The data available are
64 covariates.

Consider a
retrospective cohort
study designed to
estimate the
effectiveness of beta
blocker therapy for
treatment of heart
failure using linked
records of hospital
episodes, prescription
claims data, and death
certificates.

Conclusion

This method gives
results for many levels of
stratification of the
confounder; the joint
confounding risk ratio will
always be more extreme
than any one singly

These formulas have
allowed for binary,
ordinal, or continuous
outcomes; categorical or
continuous treatment;
and categorical or
continuous measured
and unmeasured
confounding variables.
This method uses some
simplifying assumptions:
the confounder has a
constant effect on the
treatment across all
covariate levels; does
not assume the absence
of interactions among
treatments and
covariates.

One concern with this
approach is the impact of
the choice of prior
distribution on the result
(impact is usually
unknown). We cannot
guarantee confidence
intervals as in standard
large sample theory.



Author

Steenland et al.,
20049

Phillips, 2003/

Dorie et al., 2015

Target of
Estimation

Likely range of
bias using
Monte Carlo
Analysis and
Bayesian
Sensitivity
Analysis

Probability
distribution for
a
bias-corrected
effect
measure;
corrected odds
ratio using a
Monte Carlo
Analysis

Coefficient on
an
unmeasured
confounder

Parameters
Required

A distribution
for the smoking
habits of
workers and
referents, a
distribution of
rate ratios for
the effect of
smoking on
lung cancer,
and a model for
the bias
parameter

Externally-deriv
ed distributions
of bias levels

Assume a
confounder
exists and
determine the
level of
confounding
required to
drive the native
treatment effect
to zero using
Bayesian
Additive
Regression
Trees. No
assumptions
about
population
distribution from
which data is
drawn.

Examples

Data from a US
silica-lung cancer study
in which results were
potentially confounded
by smoking.

The report of the
Hemorrhagic Stroke
Project case-control
study which linked the
decongestant and diet
aid,
phenylpropanolamine
(PPA), to hemorrhagic
stroke

The effectiveness of
anti-hypertensive drugs
on the level of blood
pressure

Conclusion

The Monte Carlo
analysis improves upon
traditional sensitivity
analyses as it provides a
range rather than a point
estimate. In situations
where the prior
information is less
precise, the bias
distribution will lead to
substantially wider Monte
Carlo and Bayesian
intervals relative to the
conventional confidence
intervals.

This method may be
improved upon -
especially in terms of the
generation of input
distributions. Compared
to the overall cost of a
study, this method is
inexpensive and feasible

This method makes no
structural assumptions -
which is much more
conducive to a real life
dataset. The sensitivity
parameters should be
based on real life
assumptions and should
be easily interpretable.
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SIMULATION STUDY

Sensitivity analysis is the study of how uncertainty in the output of a model can be
attributed to uncertainty in its inputs. In this section, a sensitivity analysis was used to
examine the impact of a Monte Carlo based sensitivity analysis for no unmeasured
confounders. The simulation will generate two correlated covariates along with an
outcome which depends on both. The analysis of the data will then ignore one of the
generated covariates, mimicking a situation in which there is an unmeasured

confounder present.

Uncorrected Bias Estimation
Data were generated (x, z, and y) assuming there is one unmeasured confounder (x),
which affects both the exposure (z) and the outcome (y). Then, the resulting bias was
calculated (if the confounder is ignored or unavailable) and the outcome model
regresses only on the exposure. In order to generate the data the following assumptions
are made:

x ~N(0,1)

z ~N(f(x), 1)

y ~ BotBix + Bz e, wheree ~N(0,1)
Note that the normal distribution can be replaced with any distribution (uniform, poisson,
exponential, etc.). In the first analysis, the parameters of the following model are

estimated: y = EO +ﬁlz+s. Finally, the bias in the estimate of §, is explored (as the
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intercept is typically of less interest the an exposure effect). The R code below indicates
how the data are generated and the bias is calculated. Note that, in the simulation, all

three parameters (B,, B,, and B,) are set equal to 1.

N <- ¢(20,50,100,500)
n.sim <- 1000
all.ests.b0 <- NULL
all.ests.b1 <- NULL
true.b0 <- 0

true.b1l <- 1

for (n in N) {
n.ests.b0 <- NULL
n.ests.b1l <- NULL
n.real.b0 <- NULL
n.real.b1l <- NULL
for (s in 1:n.sim)

{
X <- rnorm(n)
z <- rnorm(n, 0.3%*x)
y <- rnorm(n, T1+z+x)
n.ests.b0 <- c(n.ests.b0, coef(lm(y~z))[1])
n.ests.bl <- c(n.ests.b1, coef(lm(y~z))[2])
}
all.ests.b0 <- cbind(all.ests.b0, n.ests.b0)
all.ests.b1 <- cbind(all.ests.b1, n.ests.b1)
}

bias.b0 <- all.ests.b0 - true.bO ## Bias computed relative to data generation
bias.b1 <- all.ests.b1 - true.b1 ## parameters

ests.sd.b0 = c(sd(all.ests.b0O[,1]), sd(all.ests.bO[,2]), sd(all.ests.bO[,3]),

sd(all.ests.b0[,4]))
ests.sd.b1 = c(sd(all.ests.b1[,1]), sd(all.ests.b1[,2]), sd(all.ests.b1[,3]),

sd(all.ests.b1[,4]1))

Table 2 includes summary statistics for the parameter estimates of B, resulting
from 1000 simulated data sets. Figure 1 shows the distribution of the bias of ;. The

bias is is the difference between the estimated value and the true value of 1.
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Table 2: Means and standard deviations of j; .

n Mean of f, Standard Deviation
20 1.2748 0.3272
50 1.2584 0.1870

100 1.2731 0.1370
500 1.2751 0.0590

Figure 1: Bias of the uncorrected estimates of B, with varying n.
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Proposed Bias-Corrected Estimation
Next, the algorithm is modified to correct for bias. The following additional notation is
used. Let x be the unmeasured confounder, as stated earlier. Then x is of the form:

x =a,toa xz+ error.
In a real data analysis study, this external information will likely be unknown or
incomplete. In other words, we may have unknown or incomplete information about

;)= 0,1 . This (possibly incomplete or inaccurate) information would then be used to

postulate plausible values for ij\.;j = 0,1. In this simulation, three postulated
distributions for the confounding are considered: In the first scenario (which will be

referred to as Scenario A) &; ~N(a;, 0.25); j=0,1, i.e. correct and specific information

N

about the confounder is available. In the next scenario, Scenario B, 0

~ Uniflo; — 0.25, o; + 0.25]; j=0,1, i.e. correct, and more specific (variance is
approximately one third the variance of Scenario A), information about the confounder is
available. In Scenario C, ij\. ~ Unifla; = 0.75, o; + 0.75]; j=0,1. Here again the
distribution is correctly centered, but the variance is nearly three times larger than in
Scenario A. Thus, this is quite clearly a weaker case than Scenarios A and B, but it still
may perform better than a naive analysis. In the final scenario, Scenario D, incorrect,
somewhat nonspecific information is assumed: ij\. ~Unif[-1 — 0.1, =1 + 04];;=0,1
so that variance is the same as in Scenario B but the distribution is not correctly
centered.

The algorithm for generating the adjusted B;’s is as follows:
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For each simulated dataset (Z, Y) available to the analyst:
Step 1: Sample from postulated distribution of o, ’s.
Step 2: Generate x* according to the sampled fx; ’S.

Step 3: Estimate parameters from the model y ~ z + x* and record.
Step 4: Repeat until desired number of simulations completed (1000).
Figure 2 shows the bias of the estimator of B, for various sample sizes across
the 4 scenarios, as well as the uncorrected case (reproducing the pattern observed in

Figure 1). Table 3 includes summary statistics for the parameter estimates.
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Figure 2. Bias of B, for various sample sizes across Scenarios A-D and the Uncorrected case (indicated with

a U).
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Table 3: Parameter estimates of (3, for Scenarios A-D.
Scenario A Scenario B Scenario C Scenario D
n Mean SD Mean SD Mean SD Mean SD
20 1.2812 0.3483 1.2720 0.3451 1.2773 0.3439 1.2756 0.3318
50 1.2596 0.1989 1.2610 0.1952 1.2614 0.1929 1.2590 0.1872
100 1.2716 0.1417 1.2713 0.1462 1.2701 0.1430 1.2728 0.1379
500 1.2744 0.0626 1.2748 0.0628 1.2754 0.0614 1.2751 0.0593
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As observed in the tables, the proposed approach does not succeed in reducing
bias due to unmeasured confounding whether using an informed distribution for the x-z
relationship parameters or not. This finding can be explained by analogy with
measurement error: in the Monte Carlo approach, the method attempted to “recover”
the missing confounder, x, but generating a new variable that was a proxy for x given
information on z. However, this variable was not sufficient to control for confounding
because (i) it did not acknowledge the relationship between x and y, and (ii) it was a
noisy (mis-measured) version of x -- more closely correlated with z than x itself, and
therefore adjusting for this error-prone version of the confounder was insufficient to

control for the confounding by x.

CONCLUSION

To conclude, accounting for confounding is an important aspect of any regression
analysis. The results of an analysis can be severely biased if unmeasured confounding
has not been accounted for. This can and will result in real life implications, especially
and most notably in an epidemiological or health research context. Current literature on
bias measurement for unmeasured confounding addresses these concerns, adding that
most epidemiological studies lack a sufficient bias analysis. The literature on the subject
includes a wide range of processes for approximating bias in a regression model,
ranging from simple point estimates to a complete Bayesian analysis. In this simulation,
a simple and intuitive approach to dealing with unmeasured confounding had

unexpected effects, and served only to increase variability without any reduction in bias.
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Thus, the research underscored the difficulty in accounting for unmeasured covariates

even a simple epidemiological regression analysis.
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