Program Description

Statistics is concerned with the development and use of mathematical and computational methods for the collection, analysis, and interpretation of data in support of scientific inquiry, informed decision-making, and risk management. It calls on a broad range of tools from probability theory to computer-intensive techniques. The main areas of research by statisticians in the ISM network include

  • Bayesian inference and Markov chain Monte Carlo methods
  • causal inference
  • computational statistics
  • dependence modeling and multivariate analysis
  • directional statistics
  • empirical process theory
  • extreme-value analysis
  • high-dimensional data modeling
  • machine learning
  • nonparametric statistics
  • statistical learning
  • survey sampling
  • survival analysis
  • time series

Statistical research is largely motivated by collaboration with other disciplines. It finds applications in many fields, including biology, environmental science, finance and insurance, health sciences, hydrology, market research, and social sciences. With the abundance of very large and complex data sets coming, for example, from the social media and digital processes, financial transactions, astronomy, genomics, meteorology or Big Science like the Giant Hadron Collide, the statistical treatment and analysis of Big Data has become a major challenge of modern statistics.

Program Members

Academic Program

The statistics program gives an opportunity to graduate students to study in these two major areas of modern statistics. The curriculum allows the students to get well acquainted with the basic elements of mathematical statistics, decision theory and applied statistics. Furthermore, advanced graduate courses can be offered in some more specialized areas.

This program welcomes graduate students with a good background in calculus, mathematical statistics, numerical analysis, and probability (all at the undergraduate level). To get strong training in decision theory and mathematical statistics students should take the basic course in measure and integration (for PhD students) and at least three courses at the intermediate and advanced levels.

2021-22 Course Listings


Statistical Inference 1

This course is an introduction to statistical inference for parametric models. The following topics will be covered:
1. Distribution of functions of several random variables (distribution function and change of variable techniques), sampling distribution of mean and variance of a sample from Normal distribution.
2. Distribution of order statistics and sample quantiles.
3. Estimation: unbiasedness, Cramér-Rao lower bound and efficiency, method of moments and maximum likelihood estimation, consistency, limiting distributions, delta-method.
4. Sufficiency, minimal sufficiency, completeness, UMVUE, Rao-Blackwell and Lehman-Scheffe theorems.
5. Hypothesis-testing: likelihood-ratio tests.
6. Elements of Bayesian estimation and hypothesis-testing.

Text: Introduction to Mathematical Statistics (6th, 7th or 8th Edition), by R.V. Hogg and A.T. Craig, Prentice Hall Inc., 1994. Recommended reading: (for problems, examples etc) Statistical Inference (2nd Edition), by G. Casella and R. L. Berger, Duxbury, 2002. Evaluation: Assignments (4), Midterm exam, Final exam.

Prof. Arusharka Sen

MAST 672/2 / MAST 881C

Institution: Concordia University

Multivariate Statistics

This course introduces multivariate statistical analysis, both theory and methods. The goal of this course is to help students develop the statistical skills to approach and analyse multivariate data correctly in an applied, as opposed to theoretical, context. Topics covered include:

  • Matrix Algebra & Random Vectors
  • The Multivariate Normal Distribution
  • Inferences about a Mean Vector
  • Comparisons of Several Multivariate Means
  • Principal Components
  • Factor Analysis and Inference for structured covariance matrices
  • Canonical Correlation Analysis
  • Discrimination and Classification

Prof. Debaraj Sen

MAST 679K/ MAST 881K

Institution: Concordia University

Reinforcement Learning

This course is an introduction to reinforcement learning techniques. It requires extensive programming with the R language. Topics covered include: Multi-armed bandit problem, Markov Decision Problems, Dynamic Programming, Monte-Carlo solution methods, Temporal difference methods, Multi-period Approximation methods, Policy gradient.

Prof. Frédéric Godin

MAST 679L / MAST 881L

Institution: Concordia University

Honours Regression and Analysis of Variance

Multivariate normal and chi-squared distributions; quadratic forms. Multiple linear regression estimators and their properties. General linear hypothesis tests. Prediction and confidence intervals. Asymptotic properties of least squares estimators. Weighted least squares. Variable selection and regularization. Selected advanced topics in regression. Applications to experimental and observational data.

Prof. Abbas Khalili Mahmoudabadi

MATH 533

Institution: McGill University

Statistical Inference

Conditional probability and Bayes’ Theorem, discrete and continuous univariate and multivariate distributions, conditional distributions, moments, independence of random variables. Modes of convergence, weak law of large numbers, central limit theorem. Point and interval estimation. Likelihood inference. Bayesian estimation and inference. Hypothesis testing.


MATH 682

Institution: McGill University

Séries chronologiques - Sherbrooke

Processus stochastiques (généralités). Description et caractéristiques des séries chronologiques.  Transformées de Fourier. Analyse statistique des séries chronologiques.  Analyse spectrale des processus linéaires. Lissage des estimateurs spectraux.

Prof. Taoufik Bouezmarni

STT 723

Institution: Université de Sherbrooke

Mathématiques pour l’intelligence artificielle

Notions fondamentales de probabilités appliquées à divers domaines de l’intelligence artificielle. Réseaux bayésiens, champs markoviens, diverses méthodes d’inférence (variationnelle, par maximum a posteriori, recuit simulé, etc.), échantillonnage et méthodes de Monte Carlo par chaînes de Markov, séries chronologiques, partitionnement spectral et modèles à variables latentes. Applications en imagerie, en analyse de textes et sur les réseaux de neurones.

Prof. Félix Camirand-Lemyre

STT 760

Institution: Université de Sherbrooke

Méthode de statistique bayésienne

Principes de l’analyse bayésienne; loi à priori et à postériori, inférence statistique et théorie de la décision. Méthodes computationnelles; méthodes de Monte Carlo par chaînes de Markov. Applications.

Prof. Mylène Bédard


Institution: Université de Montréal

Méthodes de rééchantillonnage

Étude du « bootstrap ». Estimation du biais et de l'écart-type. Intervalles de confiance et tests. Applications diverses, incluant la régression et les données dépendantes. Étude du « jackknife », de la validation croisée et du sous-échantillonnage.

Prof. Christian Léger

STT 6220

Institution: Université de Montréal

Méthodes asymptotiques

Notions de probabilités. Comportement asymptotique des moments et quantiles échantillonnaux. Normalité asymptotique de transformation; stabilisation de la variance. Loi asymptotique du test du khi-deux. Théorie asymptotique en inférence paramétrique.

Prof. Florian Maire


Institution: Université de Montréal

Données catégorielles

Tableaux de contingence. Mesures d'association. Risque relatif et rapport de cote. Tests exacts et asymptotiques. Régression logistique, de Poisson. Modèles log-linéaires. Tableaux de contingence à plusieurs dimensions. Méthodes non paramétriques.

Prof. Alejandro Murua

STT 6516

Institution: Université de Montréal

Analyse statistique multivariée

Étude des distributions échantillonnales classiques: T2 de Hotelling; loi de Wishart; distribution des valeurs et des vecteurs propres; distribution des coefficients de corrélation. Analyse de variance multivariée. Test d'indépendance de plusieurs sous-vecteurs. Test de l'égalité de matrices de covariance. Sujets spéciaux.

Prof. Mamadou Yauck


Institution: Université du Québec à Montréal

Principes de simulation

Nombre aléatoire. Simulation de lois classiques. Méthodes d'inversion et de rejet. Algorithmes spécifiques. Simulation des chaines de Markov à temps discret et continu. Solution numérique des équations différentielles ordinaires et stochastiques. Méthode numérique d'Euler et de Runge-Kutta. Formule de Feynman-Kac. Discrétisation. Approximation faible et forte, explicite et implicite. Réduction de la variance. Analyse des données simulées. Sujets spéciaux.

Prof. Simon Guillotte


Institution: Université du Québec à Montréal

Modélisation statistique de la dépendance stochastique

Rappel sur les principales notions de statistique mathématique et sur la statistique asymptotique. Introduction à la théorie des copules. Description des modèles de dépendance bidimensionnels et multidimensionnels les plus populaires et exploration exhaustive des propriétés de ces copules. Inférence statistique dans les modèles de copules : estimation de paramètres, copule empirique, tests d'adéquation et tests d'hypothèses composites. La méthode delta fonctionnelle et ses nombreuses applications, notamment en inférence de copules. Survol des avancées récentes, incluant les tests de rupture, l'étude de la dépendance conditionnelle, la modélisation de la dépendance spatiale et l'utilisation de la fonction caractéristique. Les objectifs spécifiques de ce cours sont : de maîtriser la théorie des copules, de connaître les principales méthodes d'inférence concernant les copules, d'être au fait des principaux développements récents, de bien connaître la littérature sur les copules, d'être capable de mettre en oeuvre les méthodes statistiques avec le logiciel Matlab (estimation de la puissance de tests, analyse de jeux de données).

Prof. Jean-François Quessy


Institution: Université du Québec à Trois-Rivières


Operations Research and Simulations Methods

This course is an introduction to simulation and Monte Carlo estimation. The following topics will be covered:
1. Simulation of random variables/vectors from their (joint) probability mass function/density function: methods of inverse-transform, accept-reject, composition and factorization (for random vectors).
2. Simulation of homogeneous and non-homogeneous Poisson processes in 1-dimension: methods of inverse-transform and thinning.
3. Some discrete-event simulation models, e.g., 1-server and 2-server queues, insurance-risk model, machine-repair model.
4. Some variance-reduction techniques: methods of anti-thetic variables, control variables, conditional expectation, stratified sampling.
The software R will be extensively used to write simulation codes and will be demonstrated over a few classes.
Text: Simulation, 5th Edition, by Sheldon M. Ross. Recommended reading: A first course in statistical programming with R, 2nd Edition, by W. John Braun and Duncan J. Murdoch (Cambridge University Press). Evaluation: Assignments (4), Midterm exam, Final exam.

Prof. Arusharka Sen

MAST 729G / MAST 881G

Institution: Concordia University

Statistical Learning

This course is an introduction to statistical learning techniques. Topics covered include cross-validation, regression methods, classification methods, tree-based methods, introduction to neural networks, unsupervised learning.

Prof. Simone Brugiapaglia


Institution: Concordia University

Time Series

Statistical analysis of time series in the time domain. Moving average and exponential smoothing methods to forecast seasonal and non-seasonal time series, construction of prediction intervals for future observations, Box-Jenkins ARIMA models and their applications to forecasting seasonal and non-seasonal time series. A substantial portion of the course will involve computer analysis of time series using computer packages (mainly MINITAB). No prior computer knowledge is required.

Prof. D. Sen

MAST 677

Institution: Concordia University

Design of Experiments

This course is an introduction to basic experimental designs and analysis of linear statistical models related to them. The following topics will be covered:
1. Review of estimation and hypothesis-testing in Normal error-based linear models.
2. Analysis of completely randomized design (CRD), randomized complete block design (RCBD), balanced incomplete block design (BIBD), Latin Square design (LSD), Graeco-Latin Square design (GLSD).
3. Factorial experiments: 2-factor and 3-factor designs, confounding, fractional replication.
4. Response-surface models.
Text: Design and Analysis of Experiments, 10th Edition, by Douglas C. Montgomery (John Wiley). Evaluation: Assignments (4), Midterm exam, Final exam.

Prof. A. Sen

MAST 679Q / MAST 881Q

Institution: Concordia University

Méthodes d'analyse de données

Réduction de la dimensionnalité : par exemple, analyse en composantes principales et analyse canonique des corrélations. Classification non supervisée : classification hiérarchique, non hiérarchique et sur la base de modèles, évaluation de la qualité et choix du nombre de groupes. Classification supervisée : classifieurs linéaires et non linéaires, évaluation de la qualité des classifieurs. 


Prof. Anne-Sophie Charest

STT 7335

Institution: Université Laval

Generalized Linear Models

Exponential families, link functions. Inference and parameter estimation for generalized linear models; model selection using analysis of deviance. Residuals. Contingency table analysis, logistic regression, multinomial regression, Poisson regression, log-linear models. Multinomial models. Overdispersion and Quasilikelihood. Applications to experimental and observational data.

Prof. Johanna Neslehova

MATH 523

Institution: McGill University

Sampling Theory and Applications

Simple random sampling, domains, ratio and regression estimators, superpopulation models, stratified sampling, optimal stratification, cluster sampling, sampling with unequal probabilities, multistage sampling, complex surveys, nonresponse.



MATH 525

Institution: McGill University

Introduction to Time Series Analysis

Stationary processes; estimation and forecasting of ARMA models; non-stationary and seasonal models; state-space models; financial time series models; multivariate time series models; introduction to spectral analysis; long memory models.

Prof. Russell Steele

MATH 545

Institution: McGill University

Analyse des données

Analyse en composantes principales. Analyse des corrélations canoniques et régression multidimensionnelle. Analyse des correspondances. Discrimination. Classification. Analyse factorielle d'opérateurs.

Prof. Bernard Colin

STT 707

Institution: Université de Sherbrooke


Rappels sur la régression linéaire multiple (inférence, tests, résidus, transformations et colinéarité), moindres carrés généralisés, choix du modèle, méthodes robustes, régression non linéaire, modèles linéaires généralisés.

Prof. Alejandro Murua

STT 6415

Institution: Université de Montréal

Analyse de données multivariées

Comparaison de plusieurs populations. Représentations graphiques. Analyse en composantes principales, factorielle, des correspondances, canonique, discriminante. Classification. Mesures de redondance.

Prof. Martin Bilodeau

STT 6515

Institution: Université de Montréal

Inférence statistique

Prof. François Perron


Institution: Université de Montréal

Inférence statistique I

Espérance conditionnelle. Prédiction. Modèles statistiques, familles exponentielles, exhaustivité. Méthodes d'estimation: maximum de vraisemblance, moindres carrés etc. Optimalité: estimateurs sans biais à variance minimum, inégalité de l'information. Propriétés asymptotiques des estimateurs. Intervalles de confiance et précision. Éléments de base de la théorie des tests. Probabilité critique, puissance en relation avec la taille d'échantillon. Relation entre tests et intervalles de confiance. Tests pour des données discrètes.



Institution: Université du Québec à Montréal

Modèles de régression

Théorie des modèles linéaires généraux. Théorie des modèles linéaires généralisés. Régression logistique. Modèles log-linéaires.


MAT 7381

Institution: Université du Québec à Montréal