Geometry and topology are fundamental disciplines of mathematics whose richness and vitality, evident throughout human history, reflect a deep link to our experience of the universe. They are a focal point of modern mathematics and indeed several domains of mathematics have recently shown a strong trend towards a geometrization of ideas and methods: two cases in point are mathematical physics and number theory.
Within this broad subject, the main areas of research of the group include the topological classification of 3-dimensional manifolds; classification of special Kähler metrics; the study of symplectic invariants, especially in dimension 4; non-linear partial differential equations in Riemannian geometry, convex geometry, and general relativity; Poisson geometry and deformation quantization; and Hamiltonian dynamical systems.
Most of the researchers in the group are also membres of CIRGET, the Centre interuniversitaire de recherche en géométrie différentielle et topologie. The Center organizes scientific events as well as several weekly seminars.
Students interested in this program are expected to progress through three levels of courses.
Basic point-set topology, including connectedness, compactness, product spaces, separation axioms, metric spaces. The fundamental group and covering spaces. Simplicial complexes. Singular and simplicial homology. Part of the material of MATH 577 may be covered as well.
A Lie group is a manifold with a group structure, for example the rotation group O(n). Lie groups are used widely throughout mathematics, including in differential geometry, number theory, and mathematical physics. This course will be an introduction to Lie groups, Lie algebras, and their representations. We will cover the following topics:
Homologie et co-homologie singulières. Fibrations, co-fibrations. Groupes d’homotopie. CW-complexes. Obstructions. Suites spectrales. Produits. Dualité de Poincaré. Théorème du point fixe de Lefschetz. Groupes unitaires et classes de Chern.
On utilisera la mécanique classique et le principe de moindre action pour s'initier aux concepts de base du calcul des variations, notamment les équations d'Euler-Lagrange et les équations d'Hamilton. On transposera alors ces notions en géométrie en abordant plusieurs exemples intéressants: géodésiques, surfaces minimales, métriques à courbure constante, applications harmoniques, flot gradient, théorie de jauge. On se concentrera alors sur les surfaces minimales en s'initiant à une méthode systématique pour les construire: la théorie géométrique de la mesure.
Rappels de topologie et d'analyse. Variétés et applications différentiables, fibré tangent et différentielle d'une application. Théorème du rang constant et formes normales. Partition de l'unité et applications. Transversalité, théorème de Sard et énoncé du théorème de Thom. Tenseurs et formes différentielles, dérivée de Lie et dérivée extérieure. Intégration sur les variétés, théorème de Stokes. Distributions, théorème de Frobenius, feuilletages, Fibrés vectoriels et principaux, les connexions comme systèmes différentiels.
The course focuses on a development of Hodge theory, starting with a curve but moving rapidly to that on a compact Kähler manifold. This will include the basic theory of Kähler varieties, their deformation and degeneration. Important examples are then discussed, showing their role in the classification of algebraic varieties and in the study of their moduli spaces, including an introduction to Hodge's theory of variations of structures. We will also touch on analytical tools such as hyperbolicity to be able to address some global problems in the subject. We will aim to end with notions of stability, the Donaldson-Uhlenbeck-Yau correspondence and its generalizations, including some rudiments of non-abelian Hodge theory and their applications.
Studying representations of the fundamental group has had a long tradition in 3-manifold topology. SL(2,C) representations have been particularly well-studied because of their computational accessibility and connection to hyperbolic geometry. This course aims to discuss some aspects of this theory. The first part of the course will focus on 3-dimensional hyperbolic geometry, covering topics such as Mostow rigidity and Thurston's hyperbolic Dehn surgery theorem. The second part of the course will focus on Culler and Shalen's character variety machinery, with an eye towards proving the cyclic surgery theorem. The prerequisites for the class are basic algebraic geometry (varieties, valuations) and basic algebraic topology (fundamental group, homology).
Basic properties of differentiable manifolds, tangent and cotangent bundles, differential forms, de Rham cohomology, integration of forms, Riemannian metrics, geodesics, Riemann curvature.
The course will cover the following topics: free group and its subgroups, uniqueness of decomposition into free product. Groups acting on trees, splitting into free product with amalgamation. Bass-Serre theory. Cayley graph, SL(2,Z), isometry groups of the hyperbolic plane. Isoperimetric inequality, word problem, Dehn’s algorithm. Small cancellation groups. Quasi-isometries and quasi-geodesics. Groups hyperbolic in the sense of Gromov. Boundaries of hyperbolic groups, Tits alternative. Ends of groups. Gromov’s theorem on groups with polynomial growth.
Le laplacien et la théorie elliptique. Espaces de Sobolev. Éléments de la géométrie spectrale. Applications analytiques et topologiques à la géométrie riemannienne, symplectique ou kahlerienne.
Généralités: définitions et exemples de surfaces de Riemann. Les applications holomorphes et méromorphes, leurs propriétés fondamentales. Topologie (classification des surfaces, cohomologie de Cech). Théorie algébrique: faisceaux et cohomologie. Fibrés et formes différentielles. Résolution fine d'un faisceau, théorèmes de De Rham et Dolbeault. Théorèmes de finitude. Diviseurs et fibrés en droites. Théorème de Riemann-Roch. Dualité de Serre. Théorème de Abel-Jacobi. Théorie géométrique: théorème d'uniformisation. Classification des courbes elliptiques (surfaces de Riemann de genre 1). Métrique de Poincaré et surfaces hyperboliques. Notions de théorie de Teichmüller.
Ce cours est proposé comme une introduction à la théorie des groupes et leures algèbres de Lie. Nous couvrirons des sujets classiques, incluant la corréspondence entre les groupes de Lie connexes et simplement connexes et les algèbres de Lie ; sous-groupes fermés ; la représentation adjointe ; groupes de Lie compacts et formes bi-invariantes ; algèbres de Lie nilpotentes, résolubles et semi-simples ; les théorèmes de Lie et de Cartan ; formes de Killing ; décomposition des racines ; classification des algèbres de Lie simples ; algèbres de Lie réductives et décomposition de Cartant ; sous-groupes compacts maximaux.