Geometry and Topology

Program Description

Geometry and topology are fundamental disciplines of mathematics whose richness and vitality, evident throughout human history, reflect a deep link to our experience of the universe. They are a focal point of modern mathematics and indeed several domains of mathematics have recently shown a strong trend towards a geometrization of ideas and methods: two cases in point are mathematical physics and number theory.

Within this broad subject, the main areas of research of the group include the topological classification of 3-dimensional manifolds; classification of special Kähler metrics; the study of symplectic invariants, especially in dimension 4; non-linear partial differential equations in Riemannian geometry, convex geometry, and general relativity; Poisson geometry and deformation quantization; and Hamiltonian dynamical systems.

Most of the researchers in the group are also membres of CIRGET, the Centre interuniversitaire de recherche en géométrie différentielle et topologie. The Center organizes  scientific events as well as several weekly seminars.

Program Members

Academic Program

Students interested in this program are expected to progress through three levels of courses.

  1. The first level is mainly composed of fundamental courses: two introductory courses in geometry and topology, analysis and algebra courses. These courses will be given every year in at least one of the five ISM member institutions.
  2. The second level will introduce the student to the main subjects of the program. The student will acquire the fundamentals in Lie groups, algebraic geometry, Riemannian geometry, low-dimensional topology and analysis of partial differential equations analysis. These courses will be offered every second year.
  3. The third level is composed of more specialized courses. In addition, all students in the program are expected to participate in the geometry and topology seminar.

2024-25 Course Listings

Fall

Geometry and Topology I

Basic point-set topology, including connectedness, compactness, product spaces, separation axioms, metric spaces. The fundamental group and covering spaces. Simplicial complexes. Singular and simplicial homology. Part of the material of MATH 577 may be covered as well.

Prof. Daniel Wise

MATH 576

Institution: McGill University

Lie Groups and their Representations

A Lie group is a manifold with a group structure, for example the rotation group O(n).  Lie groups are used widely throughout mathematics, including in differential geometry, number theory, and mathematical physics.  This course will be an introduction to Lie groups, Lie algebras, and their representations.  We will cover the following topics:

  • Definitions and basic examples of Lie groups
  • Actions of Lie groups
  • Lie algebras and the exponential map
  • Compact Lie groups and semisimple Lie algebras
  • Root systems and classification
  • Representation theory and Weyl character formula

Prof. Joel Kamnitzer

MATH 599 / MATH 706

Institution: McGill University

Topologie algébrique

Homologie et co-homologie singulières. Fibrations, co-fibrations. Groupes d’homotopie. CW-complexes. Obstructions. Suites spectrales. Produits. Dualité de Poincaré. Théorème du point fixe de Lefschetz. Groupes unitaires et classes de Chern.

Prof. Jake Levinson

MAT 6354

Institution: Université de Montréal

Calcul des variations

On utilisera la mécanique classique et le principe de moindre action pour s'initier aux concepts de base du calcul des variations, notamment les équations d'Euler-Lagrange et les équations d'Hamilton.  On transposera alors ces notions en géométrie en abordant plusieurs exemples intéressants: géodésiques, surfaces minimales, métriques à courbure constante, applications harmoniques, flot gradient, théorie de jauge.  On se concentrera alors sur les surfaces minimales en s'initiant à une méthode systématique pour les construire: la théorie géométrique de la mesure. 

Prof. Frédéric Rochon

MAT8100

Institution: Université du Québec à Montréal

Géométrie différentielle

Rappels de topologie et d'analyse. Variétés et applications différentiables, fibré tangent et différentielle d'une application. Théorème du rang constant et formes normales. Partition de l'unité et applications. Transversalité, théorème de Sard et énoncé du théorème de Thom. Tenseurs et formes différentielles, dérivée de Lie et dérivée extérieure. Intégration sur les variétés, théorème de Stokes. Distributions, théorème de Frobenius, feuilletages, Fibrés vectoriels et principaux, les connexions comme systèmes différentiels.

Prof. Julien Keller

MAT 8131

Institution: Université du Québec à Montréal

Hodge theory and moduli spaces

The course focuses on a development of Hodge theory, starting with a curve but moving rapidly to that on a compact Kähler manifold. This will include the basic theory of Kähler varieties, their deformation and degeneration. Important examples are then discussed, showing their role in the classification of algebraic varieties and in the study of their moduli spaces, including an introduction to Hodge's theory of variations of structures. We will also  touch on analytical tools such as hyperbolicity to be able to address some global problems in the subject. We will aim to end with notions of stability, the Donaldson-Uhlenbeck-Yau correspondence and its generalizations, including some rudiments of non-abelian Hodge theory and their applications.

Prof. Steven Lu

MAT993N

Institution: Université du Québec à Montréal

Séminaire de géométrie différentielle et topologie: SL(2,C) representations and 3-dimensional hyperbolic geometry

Prof. Steven Boyer & Chi Cheuk Tsang

MAT993F

Institution: Université du Québec à Montréal

Winter

Geometry and Topology 2

Basic properties of differentiable manifolds, tangent and cotangent bundles, differential forms, de Rham cohomology, integration of forms, Riemannian metrics, geodesics, Riemann curvature.

Prof. Joel Kamnitzer

MATH 577

Institution: McGill University

Geometric Group Theory

The course will cover the following topics: free group and its subgroups, uniqueness of decomposition into free product. Groups acting on trees, splitting into free product with amalgamation. Bass-Serre theory. Cayley graph, SL(2,Z), isometry groups of the hyperbolic plane. Isoperimetric inequality, word problem, Dehn’s algorithm. Small cancellation groups. Quasi-isometries and quasi-geodesics. Groups hyperbolic in the sense of Gromov. Boundaries of hyperbolic groups, Tits alternative. Ends of groups. Gromov’s theorem on groups with polynomial growth.

Prof. Piotr Przytycki

MATH 583

Institution: McGill University

Analyse géométrique (cours enseigné en anglais)

Le laplacien et la théorie elliptique. Espaces de Sobolev. Éléments de la géométrie spectrale. Applications analytiques et topologiques à la géométrie riemannienne, symplectique ou kahlerienne.

Prof. Dmitry Faifman

MAT6230

Institution: Université de Montréal

Surfaces de Riemann (UQAM)

Pour un cours d’introduction aux surfaces de Riemann en un trimestre, il faut forcément faire des choix. Le plan de cours proposé consiste à partir de l’origine du sujet dans la théorie des fonctions d’une variable complexe et viser une compréhension du Théorème de Riemann-Roch selon deux approches distinctes relevant de la géométrie algébrique classique puis de l’analyse moderne. Selon son penchant personnel, chaque inscrit au cours pourra alors approfondir le sujet par des lectures personnelles autour des outils les mieux maîtrisés.

Chapitre I : Théorie élémentaire des surfaces de Riemann
- Rappels d’Analyse complexe
- Origines de la notion de surface de Riemann
- Surfaces, structures et atlas complexes, définition d’une surface de Riemann
- Exemples de surfaces de Riemann
- Lien avec les courbes algébriques planes
- Interlude : vision panoramique (suivant Eric Reyssat)
- Fonctions holomorphes et méromorphes, forme normale locale, notion de degré
- Formule de Riemann-Hurwitz
- Prolongement analytique, monodromie et Théorème d’existence de Riemann
- Calcul différentiel et intégral sur les surfaces de Riemann

Chapitre II: Géométrie algébrique classique des surfaces de Riemann
- Fonctions méromorphes et notion de diviseur sur une surface de Riemann
- Equivalence linéaire de diviseurs
- Diviseurs d’intersection, degré d’une courbe projective lisse, Théorème de Bézout
- Problèmes de Mittag-Leffler et H1(D)
- Théorème de Riemann-Roch, Dualité de Serre
- Quelques applications de Riemann-Roch

Chapitre III: Analyse sur les surfaces de Riemann compactes
- Cohomologie de Cech, notion de faisceau, Lemme de Dolbeault, finitude cohomologique
- Suite exacte en cohomologie, Théorème de Dolbeault
- Nouvelle formulation de Riemann-Roch
- Dualité de Brill-Noether-Serre et conséquences

Selon le temps disponible et les intérêts exprimés par les participantes et participants au cours, des sujets spéciaux seront abordés, notamment sous forme d’exposés ou travaux personnels pour conclure ce cours d’introduction aux surfaces de Riemann.

Prof.

MAT 7113

Institution: Université du Québec à Montréal

Groupes et algèbres de Lie

Définitions, exemples et propriétés de base des groupes et algèbres de Lie. Classification et structure des algèbres de Lie semi-simples. Décomposition de Cartan: algèbres de Lie réelles. Formule des caractères de Weyl. Représentations orthogonales et symplectiques.

Prof. Vestislav Apostolov

MAT 7410

Institution: Université du Québec à Montréal