Combinatorics and Algebra

Source: Zumthie at de.wikipedia [Public domain], via Wikimedia Commons

Program Description

There are increasingly important links between the study of discrete structures on the one hand and classical mathematics such as algebra, analysis, geometry and number theory on the other. The exploration of these deeper interactions is mutually beneficial to both areas as new problems and insights are developed. This work will have important applications in areas such as computer science, physics, computational geometry, computational biology, operations research and cryptography.

Modern computational tools play an important role in this program. In particular, the use and development of algorithms and software for algebraic computation are an important aspect of the program.

Research interests of the members of the group include: enumerative and algebraic combinatorics, commutative and non-commutative algebra, theoretic computer science, the combinatorics of words, and computational biology.

Researchers in this group are afficilated with two research groups:

Program Members

Academic Program

This program is designed for strong graduate students with an interest in discrete mathematics and/or some theoretical aspects of computer science. There are no formal programme requirements beyond the departmental requirements. However basic courses in combinatorics, graph theory and algorithms are highly recommended.

2018-19 Course Listings

Fall

Algorithmes en combinatoire

Étudier certains algorithmes qui sont omniprésents en combinatoire ; et surtout pour comprendre leur rôle dans des interactions avec la géométrie et l’algèbre. On va développer les notions combinatoires et algorithmiques nécessaires, en particulier il n'y a pas de préalables formels (contrairement à ce qui est indiqué dans la description officielle du cours). Sujets : Représentation informatisée des structures combinatoires (permutations, partitions, compositions, etc.) ; génération exhaustive et aléatoire de ces structures; algorithme de Robinson-Schensted ; arbres binaires de recherche ; structures de données ; algorithmes sur les graphes.

Prof. Franco Saliola

MAT7441

Institution: Université du Québec à Montréal

Winter

Théorie des anneaux

This course is an introduction to the theory of non-commutative rings.  We will begin with a recollection of certain basic ideas on rings and modules.  We will look at the theory of Wedderburn-Artin and semi-simple rings.  We will study the Jacobson radical and the prime radical, as well as prime and primitive rings.  Other subjects may be added if there is sufficient time, chosen based on the interests of the students.  

Prof. Hugh Thomas

MAT7100

Institution: Université du Québec à Montréal

Advanced Set Theory

Topics may be chosen from combinatorial set theory, Goedel's constructible sets, forcing, large cardinals.

Prof. Marcin Sabok

MATH 590

Institution: McGill University

Théorie des graphes

Le contenu du cours sera en partie précisé suivant les intérêts des étudiants. Les grandes lignes sont les suivantes :

  • Définitions et résultats de base.
  • Arbres, arborescences.
  • Connexité : théorèmes de Menger et les équivalences entre les résultats de Menger, Dilworth, König, Hall, Ford-Fulkerson (flots).
  • Homomorphismes, colorations.
  • Graphes de Cayley.
  • Théorie extrémale : théorèmes de Turan, de Ramsey.
  • Graphes infinis : théorème de Ramsey, compacité.

Prof. Gena Hahn

MAT 6490

Institution: Université de Montréal