L'étude du groupe de Galois du corps des nombres algébriques est un sujet de grand intérêt pour les chercheurs dans ce programme. Afin d'étudier ce groupe, on utilise ses représentations dans d'autres objets algébriques, géométriques ou analytiques. Cela amène des liens avec des groupes algébriques, des variétés analytiques (réelles, complexes ou p-adiques) et la théorie de Lie. Ces relations sont subtiles et, pour progresser dans la théorie des nombres, il faut en avoir une connaissance plus approfondie. Par exemple, la conjecture de Shimura-Taniyama-Weil, selon laquelle toutes les courbes elliptiques définies sur le corps des nombres rationnels sont modulaires, implique le dernier théorème de Fermat.
Depuis quelques années, en raison de la disponibilité d'ordinateurs puissants et de logiciels tels que MAPLE, CAYLEY et PARI, des calculs de grande échelle se sont avérés très importants dans la vérification et la formulation des conjectures. Le calcul algébrique est en pleine évolution grâce au développement d'algorithmes plus rapides pour faire les calculs.
Les établissements membres de l'Institut regroupent un grand nombre de chercheurs en théorie des nombres, courbes elliptiques, géométrie arithmétique, groupes algébriques, théorie des groupes et algèbres de Lie, algèbre commutative, théorie des représentations des groupes et algèbres de Lie, théorie de Galois, groupes profinis et calcul algébrique, théorie des représentations des algèbres associatives, algèbre homologique et catégorique, théorie des anneaux et des modules.
Plusieurs membres du regroupement font partie du Centre interuniversitaire en calcul mathématique algébrique (CICMA), un centre de recherche interuniversitaire qui organise beaucoup d'événements scientiques.
Ce programme s'adresse aux étudiants gradués ayant une solide formation en algèbre, en théorie des groupes, en théorie des nombres (algébriques et/ou analytiques) ainsi qu'en géométrie algébrique. Les professeurs associés au programme s'intéressent à la fois aux aspects théoriques et informatiques de ces thèmes de recherche.
Il n'y a pas de prérequis spécifiques autres que ceux exigés par chaque département. Cependant les recommandations suivantes devraient être suivies et les cours devraient être choisis en consultation avec un professeur appartenant au groupe responsable du programme.
Tous les étudiants devraient maîtriser les bases de l'algèbre en suivant les cours adéquats d'introduction (théorie des groupes, algèbre commutative, groupes de Galois, théorie des nombres) dans l'un ou l'autre des établissements membres de l'Institut.
Les étudiants devraient par la suite suivre des cours plus spécialisés dans leur champ d’intérêt et/ou dans un domaine complémentaire.
Les étudiants sont encouragés à participer à des séminaires avancés et à suivre des cours dans leur domaine de recherche.
The course will follow chapter II of Hartshorne's book Algebraic Geometry, as follows: we will study sheaves of rings on topological spaces, affine schemes, projective schemes, coherent and quasi-coherent OX-modules on a scheme X, differentials.
This course will be an introduction to the theory of modular forms over the complex number. We shall cover the following topics: the modular group and the upper half-plane, Eisenstein series, Hecke operators, L-functions, modular curves, geometric interpretation of modular forms. If time allows it, further topics (Galois representations or Eichler--Shimura relations) will be considered. Knowledge of complex analysis, Riemann surfaces, and sheaves is useful but not necessary.
Corps (extensions, théorie de Galois, corps finis), Anneaux (noethériens et artiniens, radicaux, idéaux premiers et maximaux, localisation, théorème de Wedderburn, Nullstellensatz), Modules (lemme de Schur, modules projectifs et injectifs, suites exactes, produit tensoriel, catégories).
Review of group theory; free groups and free products of groups. Sylow theorems. The category of R-modules; chain conditions, tensor products, flat, projective and injective modules. Basic commutative algebra; prime ideals and localization, Hilbert Nullstellensatz, integral extensions. Dedekind domains. Part of the material of MATH 571 may be covered as well.
Distribution des nombres premiers. Fonction zêta de Riemann et fonctions-L de Dirichlet. Le théorème des nombres premiers, et de Bombieri-Vinogradov. La répartition des nombres premiers consécutifs.
Introduction to Ring Theory: definitions and examples, ideals, quotients and isomorphisms. Euclidean domains, principal ideal domains and unique factorization domains. Polynomial rings and introduction to modules.
Anneaux et modules: k-algèbre et anneaux de division, modules à gauche, à droite et bimodules, R-modules simples, semi-simples, cycliques et indécomposables, Théorème de structure pour les anneaux semi-simples et théorème du double centralisateur.
Théorie des représentations: Représentations linéaires, théorème de structure pour les algèbres de groupes C[G], idempotents, relations d'orthogonalités, caractères et fonctions centrales, théorème de la dimension et théorème pq de Burnside.
Le cours sera donné en comodal.
Completion of the topics of MATH 570. Rudiments of algebraic number theory. A deeper study of field extensions; Galois theory, separable and regular extensions. Semi-simple rings and modules. Representations of finite groups.
Anneaux commutatifs, idéaux premiers, rudiments de géométrie algébrique, Nullstellensatz de Hilbert, localisation, complétion, théorie de la dimension.
Groupe des points d’une courbe elliptique. Théorème de Mordell-Weil. Groupes de Selmer et de Tate-Shafarevich. Les expansions de Fourier des formes modulaires et l’idée de modularité. Applications aux équations diophantiennes.
Anneaux commutatifs et leurs modules. Localisation : idéaux premiers, racine d'un idéal, anneaux et modules de fractions, anneaux locaux. Dépendance entière: clôture intégrale, théorème de montée. Anneaux et modules noethériens, anneaux de polynômes sur un anneau noethérien. Ensembles algébriques affines, théorème des zéros de Hilbert, ensembles algébriques irréductibles et idéaux premiers, propriétés des courbes planes, dimension des variétés. Applications.