Algèbre et théorie des nombres

Description du programme

L'étude du groupe de Galois du corps des nombres algébriques est un sujet de grand intérêt pour les chercheurs dans ce programme. Afin d'étudier ce groupe, on utilise ses représentations dans d'autres objets algébriques, géométriques ou analytiques. Cela amène des liens avec des groupes algébriques, des variétés analytiques (réelles, complexes ou p-adiques) et la théorie de Lie. Ces relations sont subtiles et, pour progresser dans la théorie des nombres, il faut en avoir une connaissance plus approfondie. Par exemple, la conjecture de Shimura-Taniyama-Weil, selon laquelle toutes les courbes elliptiques définies sur le corps des nombres rationnels sont modulaires, implique le dernier théorème de Fermat.

Depuis quelques années, en raison de la disponibilité d'ordinateurs puissants et de logiciels tels que MAPLE, CAYLEY et PARI, des calculs de grande échelle se sont avérés très importants dans la vérification et la formulation des conjectures. Le calcul algébrique est en pleine évolution grâce au développement d'algorithmes plus rapides pour faire les calculs.

Les établissements membres de l'Institut regroupent un grand nombre de chercheurs en théorie des nombres, courbes elliptiques, géométrie arithmétique, groupes algébriques, théorie des groupes et algèbres de Lie, algèbre commutative, théorie des représentations des groupes et algèbres de Lie, théorie de Galois, groupes profinis et calcul algébrique, théorie des représentations des algèbres associatives, algèbre homologique et catégorique, théorie des anneaux et des modules.

Plusieurs membres du regroupement font partie du Centre interuniversitaire en calcul mathématique algébrique (CICMA), un centre de recherche interuniversitaire qui organise beaucoup d'événements scientiques.

Membres du programme

Formation

Ce programme s'adresse aux étudiants gradués ayant une solide formation en algèbre, en théorie des groupes, en théorie des nombres (algébriques et/ou analytiques) ainsi qu'en géométrie algébrique. Les professeurs associés au programme s'intéressent à la fois aux aspects théoriques et informatiques de ces thèmes de recherche.

Il n'y a pas de prérequis spécifiques autres que ceux exigés par chaque département. Cependant les recommandations suivantes devraient être suivies et les cours devraient être choisis en consultation avec un professeur appartenant au groupe responsable du programme.

Tous les étudiants devraient maîtriser les bases de l'algèbre en suivant les cours adéquats d'introduction (théorie des groupes, algèbre commutative, groupes de Galois, théorie des nombres) dans l'un ou l'autre des établissements membres de l'Institut.

Les étudiants devraient par la suite suivre des cours plus spécialisés dans leur champ d’intérêt et/ou dans un domaine complémentaire.

Les étudiants sont encouragés à participer à des séminaires avancés et à suivre des cours dans leur domaine de recherche.

Cours 2017-18

Automne

Algebraic Number Theory

Number Fields and Ideals. Dedekind domains, unique factorization of ideals, ideal class groups. Geometry of numbers, finiteness of the class number and the unit theorem. Special Fields (quadratic, cyclotomic, etc), applications to Fermat's last theorem. Analytic Methods, Zeta and L-functions, analytic continuation, density theorems.

TEXTBOOK: Number Fields by Daniel A. Marcus, Universitext, Springer-Verlag.

Prof. Chantal David

MAST 693 / MAST 833A

Institution: Concordia University

Topics in Algebra and Number Theory: Introduction to Analytic Number Theory

The course will be an unorthodox introduction to analytic number theory for people with some exposure to/liking of hard analysis. The emphasis will be on harmonic analysis as used in analytic number theory. The unorthodoxy will consist in that we will follow the natural development and inter-relation of various techniques rather than focus on the primes, which are typically given prominence in introductory courses.

Time. Tuesday, Friday, 12:05pm to 13:25pm.

First meeting on September12, 2017 at noon.

Prof. Maksym Radziwill

MATH 596

Institution: Université McGill

Sujets spéciaux en théorie des nombres (Introduction aux formes modulaires)

Le groupe modulaire et les sous-groupes de congruence, les formes modulaires et ses propriétes de base, séries de Eisenstein, séries theta, formule des valences, opérateurs de Hecke, théorie de Atkin-Lehner, fonctions L, courbes modulaires, modularité.

Prof. Matilde Lalin

MAT 6684W

Institution: Université de Montréal

Hiver

Algebraic Geometry: The Theory of schemes

The course will follow chapter II of Hartshorne's book and will develop the basic tools of the theory of schemes: sheaves of abelian groups and rings on topological spaces, the spectrum of a ring with its structure sheaf, the fiber product of schemes, properness and separatedness of morphisms of schemes. A special importance will be given to solving the problems in the text.

Prof. Adrian Iovita

MAST 699/4 C / 833

Institution: Concordia University

Formal Groups and their Applications

Prof. Eyal Goren

MATH 596

Institution: Université McGill

Algèbre commutative et géométrie algébrique

Anneaux commutatifs et leurs modules. Localisation : idéaux premiers, racine d'un idéal, anneaux et modules de fractions, anneaux locaux. Dépendance entière: clôture intégrale, théorème de montée. Anneaux et modules noethériens, anneaux de polynômes sur un anneau noethérien. Ensembles algébriques affines, théorème des zéros de Hilbert, ensembles algébriques irréductibles et idéaux premiers, propriétés des courbes planes, dimension des variétés.

Prof. Thomas Brüstle

MAT 729

Institution: Université de Sherbrooke

Algèbre: thèmes choisis

Ce cours se veut une introduction aux surfaces de Riemann compactes (aussi appelées courbes algébriques sur les complexes). La théorie sera développée en faisant appel simultanément à des notions d'algèbre, d'analyse complexe et de topologie. Voici les thèmes qui seront traités: courbes projectives, courbes affines, applications holomorphes et méromorphes, singularités (noeud, cusp), formule d'Hurwitz, courbes hyperelliptiques, revêtements, représentations de monodromie pour les revêtements et les EDO, formes différentielles, diviseurs et Théorème de Riemann-Roch, problème de Mittag-Leffler, différentielles de première espèce et théorème d'Abel, faisceaux, classification des fibrés en droite holomorphes sur des courbes projectives et lisses. 

Prof. Hugo Chapdelaine

MAT 7390

Institution: Université Laval