Algebra and Number Theory

Program Description

An area of major interest in this program is the study of the Galois group of the algebraic closure of the rationals. The methods of study of this group involves its representations in other algebraic, geometric or analytic objects. This leads to connections with algebraic groups, analytic varieties (real, complex and p-adic), and Lie theory. The interconnections are deep, and progress in number theory requires a more profound understanding of each of these connections. For example, the conjecture of Shimura-Tanyama-Weil that all elliptic curves over the rationals are modular implies Fermat's Last Theorem.

In recent years, due to the availability of powerful computers and software such as MAPLE, CAYLEY and PARI, large scale computations have proven themselves extremely important in making and verifying conjectures. Computational algebra is rapidly evolving with the production of better and faster algorithms for making computations.

The participating universities contributing to this Institute have many people working in currently active areas of research in number theory, elliptic curves, arithmetic geometry, algebraic groups, group theory and Lie theory, commutative algebra, representation theory of groups and Lie algebras, Galois theory, profinite groups and computational algebra, representation theory of associative algebras, homologic and categoric algebra, ring theory and modules.

Many members of the group are also members of CICMA (Centre interuniversitaire en calcul mathématique algébrique), an inter-university research center that organizes many scientific activities.

Program Members

Academic Program

This program is designed for strong graduate students with an interest in algebra, group theory, number theory (algebraic and/or analytic) and algebraic geometry. Both theoretical and computational aspects of these topics are covered.

There are no formal prerequisites beyond those required by the departments. However, the following guidelines should be followed and courses selected in consultation with an advisor in the program.

All students are expected to acquire the fundamentals of algebra, such as are contained in beginning level graduate courses at any of the participating universities (e.g., group theory, commutative algebra, Galois theory, number theory).

Students are then expected to take a number of more specialized courses (in their areas of interest and adjacent or complementary areas).

Students are encouraged to participate in advanced seminars and courses in their areas of specialty.

2024-25 Course Listings

Fall

Topics on Elliptic Curves

The course will focus on the study of elliptic curves over the complex and p-adic numbers. It will cover topics such as: complex uniformisation, Weistrass P-functions, the periods of an elliptic curve, the formal group of an elliptic curve, ordinary and supersingular elliptic curves, integral model of elliptic curves, the local Galois representation.

Prof. Chantal David

MAST 699 (MAST 833)

Institution: Concordia University

Algebraic Geometry

The main objective of the course is to study geometrically algebraic objects, for example commutative rings with identity. To such a ring we will attach a topological space and a sheaf of rings on it, making it into a geometric object called "affine scheme". We will see that affine schemes can be glued together to give other (non-affine) schemes.

Prof.

MAST 699 / 833

Institution: Concordia University

Algèbre commutative et théorie de Galois

Corps (extensions, théorie de Galois, corps finis), Anneaux (noethériens et artiniens, radicaux, idéaux premiers et maximaux, localisation, théorème de Wedderburn, Nullstellensatz), Modules (lemme de Schur, modules projectifs et injectifs, suites exactes, produit tensoriel, catégories).

Prof. Michael Lau

MAT 7205

Institution: Université Laval

Algèbre (thèmes choisis) : Introduction à la géométrie algébrique

Ce cours se veut une introduction à la géométrie algébrique et sera divisé en deux parties. Dans la première partie on étudiera les courbes algébriques sur les complexes avec une emphase sur les courbes projectives et lisses (i.e. les surfaces de Riemann compactes). La théorie sera développée en faisant appel simultanément à des notions d'algèbre, d'analyse complexe et de topologie. Voici les thèmes qui seront traités dans cette première partie: courbes affines, courbes projectives, applications holomorphes et méromorphes, fonctions thêtas, courbes hyperelliptiques, revêtements et formule d'Hurwitz, théorème de Riemann-Roch, singularités (noeud, cusp). Dans la deuxième partie du cours nous aborderons la théorie générale des variétés algébriques sur un corps quelconque avec une emphase sur celles qui sont définies sur le corps des complexes. Voici les thèmes qui seront couverts dans cette deuxième partie: anneaux noethériens et ensembles algébriques affines, variétés affines et théorème du Nullstellensaz de Hilbert, variétés projectives, anneaux des coordonnées affines et homogènes, morphismes et applications birationnelles, topologie de Zariski et équivalence de catégorie pour le cas affine.

Prof. Hugo Chapdelaine

MAT-7730

Institution: Université Laval

Higher Algebra 1

• Categories and functors, adjoint and equivalence, tensor products, localization of rings and module, limits. 
• Affine schemes. Integral extensions. 
• Noetherian and artinian rings and modules. Hilbert’s basis theorem, Noether’s normalization lemma and Hilbert’s Nullstellensatz. The affine space. 
• Representations of finite groups.

Prof. Daniel Wise

MATH 570

Institution: McGill University

Théorie algébrique des nombres

Nombres et entiers algébriques. Unités. Norme, trace, discriminant et ramification. Base intégrale. Corps quadratiques, cyclotomiques. Groupes de classes. Décomposition en idéaux premiers. Équations diophantiennes.

Prof. Matilde Lalin

MAT 6650

Institution: Université de Montréal

Algèbre

Lemme de Zorn. Catégories et foncteurs: notions et exemples de base: catégories de structures mathématiques, monoïde, catégorie des ensembles; section, rétraction, exemples géométriques et algébriques. Foncteurs et transformations naturelles: exemples de base, catégories de foncteurs. Équivalence de catégories: exemples de base. Modules. Théorèmes d'homomorphisme et d'isomorphisme. Sommes et produits directs, modules libres. Modules de type fini sur un anneau principal et applications aux formes canoniques des matrices. Modules noethériens et artiniens: exemples et propriétés de base. Modules indécomposables, théorème de Krull-Schmidt. Anneaux et polynômes: nilradical et localisation; élimination classique, ensembles algébriques, théorème des zéros de Hilbert. Théorie des corps: groupe de Galois, résolution par radicaux; indépendance algébrique, degré de transcendance, dimension des ensembles algébriques irréductibles; corps ordonnables, 17<+>e<+> problème de Hilbert.

Prof. Alejandro Morales

MAT 7600

Institution: Université du Québec à Montréal

Winter

Topics in Algebra: Diophantine Geometry

Prof.

MAST 699 / 833

Institution: Concordia University

Groups and Rings

Introduction to Ring Theory: definitions and examples, ideals, quotients and isomorphisms. Euclidean domains, principal ideal domains and unique factorization domains. Polynomial rings and introduction to modules.

Prof.

MAST 699 / 833

Institution: Concordia University

Higher Algebra 2

• Representations of finite groups.
• Semi-simple rings.
• Central simple algebras and the Brauer group.
• Projective, injective and flat modules.
• Homological algebra.

Prof. Eyal Goren

MATH 571

Institution: McGill University

Advanced Topics in Number Theory

Prof. Eyal Goren

MATH 726

Institution: McGill University

Théorie de la représentation des groupes (cours enseigné en anglais)

Représentations des groupes, algèbre d’un groupe fini, table de caractères, représentations des groupes symétriques, groupes de Lie, algèbre de Lie, représentations des groupes classiques.

Prof. Leonid Rybnikov

MAT 6621

Institution: Université de Montréal

Distribution des nombres premiers

Distribution des nombres premiers. Fonction zêta de Riemann et fonctions-L de Dirichlet. Le théorème des nombres premiers, et de Bombieri-Vinogradov. La répartition des nombres premiers consécutifs.

Prof. Andrew Granville

MAT6652

Institution: Université de Montréal

Thèmes choisis en algèbre : théorie des représentations et des carquois

Représentations de carquois, représentations projectives et injectives, algèbres et modules, algèbres de carquois liés, théorie d'Auslander-Reiten.

Prof. Véronique Bazier-Matte

Laval-7395

Institution: Université Laval

Représentation des groupes

La théorie de la représentation des groupes et une théorie algébrique dont les ramifications s’étendent à de très nombreux domaines des mathématiques ainsi qu’à la Physique te à la Chimie. L’apprentissage de cette théorie permettra entre autre à l’étudiant d’appréhender d’autres théories algébriques de la représentation.

Descripteur : Représentations linéraires des groupes finis. Sous-représentations, théorème de Mashke; représentations irréductibles. Théorie des caractères. Décomposition en composantes isotypiques. Produits tensoriels; représentation induites. Représentations linéaires des groupes compacts. Exemples: groupes cycliques, diédraux, symétriques: tores, groupes de rotations.

Prof. François Bergeron

MAT 7400

Institution: Université du Québec à Montréal