
Geometry of random planar maps and genus-0 hyperbolic surfaces

ISM school: Geometry and spectra of random hyperbolic surfaces (University of Montréal)
Exercises by T. Budd for tutorial on 15 June 2023

Exercise 1.1: Tree bijection for quadrangulations

A (planar) quadrangulation is a rooted planar map with all faces of degree 4. For these maps the
BDFG bijection specializes to the Cori-Vauquelin-Schaeffer (CVS) bijection: since all unlabeled
black vertices in the mobile are of degree two, they can be removed by merging their adjacent edges
and one ends up with a Z-labeled (rooted) plane tree.

a) Determine the Z-labeled plane tree associated to the following pointed quadrangulation.

b) What are the allowed label increments along the edges of the tree? Prove that the number of
quadrangulations (not pointed) with n faces is

Qn =
2 · 3n

(n+ 1)(n+ 2)

(
2n

n

)
. (1.1)

c) Let qn be a uniform random quadrangulation with n faces and v1, v2 a uniform pair of distinct
random vertices of qn. Let d1 be the graph distance between v1 and the furthest end of the
root edge and d2 the graph distance between v1 and v2. Prove that

E[d2 − d1] = 0, lim
n→∞

E

[(
d1 − d2

n1/4

)2
]
=

√
π

3
. (1.2)

Hint: Interpret d2−d1 on the level of the tree. You may use the fact that the expected height
(graph distance to the root vertex) of a uniform vertex in a uniform plane tree with n edges
is asymptotic to 1

2

√
πn.

This suggests that graph distances between typical vertices in qn are of order n1/4.

Exercise 1.2: Generating functions of maps with boundaries

Recall that the partition function

Fm
0 (t, q) =

∑
rooted maps m

1

2|E(m)|
t|V (m)|

∏
f∈F (m)

qdeg f/2. (2.1)

of bipartite planar maps with face weights q = (q1, q2, . . .) and vertex weight t is given by

Fm
0 (t, q) =

1

2

∫ R

0

dr

r

[
(gq(r)− t)2 − (r − t)21{r<t}

]
(2.2)

where

gq(r) = r −
∞∑
k=1

qk

(
2k − 1

k

)
rk, (2.3)
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and R(t, q) = t
1−q1

+ O(t2) is the power series solution to gq(R) = t. Show that the pointed disk
function

W
(ℓ)
• (t, q) = 2ℓ

∂2Fm
0

∂t ∂qℓ
(2.4)

is given by

W
(ℓ)
• (t, q) =

(
2ℓ

ℓ

)
Rℓ. (2.5)

Hint : Use that gq(R) = t repeatedly!

Exercise 1.3: Size of Boltzmann planar maps

Let us choose some real number q1, q2, . . . ≥ 0 such that only finitely many of the qk are nonzero
(and at least one of q2, q3, . . . is positive). Then for t sufficiently small

R(t, q) =
∑

m∈M⃗•
0

t|V (m)|−1
∏

f∈F (m)

qdeg f/2 < ∞. (3.1)

Recall that R solves the equation gq(R) = t, where

gq(r) = r −
∞∑
k=1

qk

(
2k − 1

k

)
rk. (3.2)

a) Prove that the coefficient of tn in R(t, q), denoted [tn]R(t, q), satisfies

[tn]R(t, q)
n→∞∼ Ct−n

∗ n−3/2 for some t∗, C > 0. (3.3)

Hint: You may use the following Transfer theorem. If f(x) is a power series with positive
coefficients that is analytic on [0, x∗) and for c > 0, α ∈ (0, 1),

f(x) = f(x∗)− c(x∗ − x)α + o((x− x∗)α), then [xn]f(x)
n→∞∼ c

Γ(−α)
x−n
∗ n−α−1. (3.4)

b) Recall our definition of the rooted pointed (t, q)-Boltzmann planar map as the probability
distribution

P(m) =
1

R(t, q)
t|V (m)|−1

∏
f∈F (m)

qdeg f/2 (3.5)

on rooted, pointed maps m. Prove that the number of vertices in such a map obeys

P(|V (m)| = n+ 1) =
C

R

(
t

t∗

)n

n−3/2. (3.6)

In particular, E[|V (m)|] < ∞ if t < t∗ (subcritical) and E[|V (m)|] = ∞ if t = t∗ (critical).

Exercise 1.4: Generating function of ψ-class intersection numbers

In this exercise you will prove the fact stated in the lecture that the solution F0(t0, t1, . . .) = t30+ · · ·
to the string equation

∂F0

∂t0
=

t20
2
+

∞∑
i=0

ti+1
∂F0

∂ti
, (4.1)

is given by

F0(t0, t1, . . .) =
1

2

∫ u0

0
Z(r)2dr, (4.2)

where u0(t0, t1, . . .) = t0 + · · · is the formal power series solution to

Z(u0) = 0, Z(r) := r −
∞∑
k=0

tk
rk

k!
. (4.3)
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a) Define for p ≥ 1 the power series

fp(t0, t1, . . .) =

∞∑
k=0

tk+p
uk0
k!

. (4.4)

Show that
∂u0
∂t0

=
1

1− f1
,

∂fp
∂t0

=
fp+1

1− f1
. (4.5)

Hint: Compute d
dt0

Z(u0).

b) Make use of the string equation and (4.5) to show that

d

ds
F0(t0 − s, f1(s, t1, t2, . . .), f2(s, t1, t2, . . .), . . .) = −1

2
(t0 − s)2

∂u0
∂t0

(s, t1, t2, . . .). (4.6)

c) Integrate (4.6) from s = 0 to s = t0 to prove (4.2).
Hint: Argue that u0(0, t1, . . .) = 0 and fp(0, t1, . . .) = tp, and perform a change of integration
variables s → r = u0(s, t1, . . .).
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