EXERCISES 2

TRACE OF THE HEAT KERNEL AND ISOSPECTRALITY

(1) The heat equation on a compact hyperbolic surface $M=\Gamma \backslash \mathbb{H}$ asks for a solution $u: \mathbb{R}_{+} \times M \rightarrow \mathbb{R}$ such that

$$
\left\{\begin{array}{l}
\partial_{t} u=\Delta u \\
u(0, x)=f(x)
\end{array}\right.
$$

with initial condition $f \in C^{\infty}(M)$. A first step in constructing a solution is to assume that $-\Delta f=\lambda f$ and consider

$$
u(t, z)=\int_{\mathbb{H}} h_{t}(z, w) f(w) d \mu(w)
$$

for some choice of point-pair invariant $h_{t}(z, w)$. Show that $\widehat{h_{t}}(\lambda)=e^{-t \lambda}$.
With Selberg's inversion formulas and some more work, one can then construct the heat kernel

$$
H_{t}(z, w)=\sum_{\gamma \in \Gamma} h_{t}(z, \gamma w)
$$

for M and solve the heat equation.
(2) Show that the trace of the heat kernel, i.e.,

$$
\int_{M} H_{t}(z, z) d \mu(z)=\sum_{\lambda \in \operatorname{Spec}(-\Delta)} e^{-t \lambda}
$$

completely determines the spectrum of $-\Delta$. (Hint: Consider $e^{r t} \operatorname{Tr}\left(H_{t}\right)$ as $t \rightarrow \infty$.)

Can we hear the shape of a drum? Namely, if M_{1} and M_{2} are isospectral compact hyperbolic surfaces, are they necessarily isometric?

For the rest of this problem sheet we will consider the covering diagram

with $M=\Gamma \backslash \mathbb{H}, M_{i}=\Gamma_{i} \backslash \mathbb{H}, \Gamma \triangleleft \Gamma_{i}$ normal of finite index for $i=0,1,2$. The corresponding covering groups are $G=\Gamma_{0} / \Gamma, H_{1}=\Gamma_{1} / \Gamma, H_{2}=\Gamma_{2} / \Gamma$. The surfaces M_{1} and M_{2} are isometric if and only if Γ_{1} and Γ_{2} are isometric in $\operatorname{Isom}(\mathbb{H})$. By the previous exercise, we say that M_{1} and M_{2} are isospectral if they have the same heat trace.
(3) Show that

$$
H_{t}^{M_{0}}(z, w)=\sum_{\gamma \in \Gamma_{0}} h_{t}(z, \gamma w)=\sum_{g \in G} H_{t}^{M}(z, g w) .
$$

and

$$
\operatorname{Tr}\left(H_{t}^{M_{0}}\right)=\frac{1}{|G|} \sum_{g \in G} \int_{M} H_{t}^{M}(z, g z) d \mu(z)=\sum_{[g]} \frac{|[g]|}{|G|} \int_{M} H_{t}^{M}(z, g z) d \mu(z)
$$

where the sum is over conjugacy classes of g in G.
(4) (Sunada's criterium for isospectrality [1]) Let $i=1,2$. Show that if $h_{1}, h_{2} \in H_{i}$ are conjugate in G then

$$
\int_{M} H_{t}^{M}\left(z, h_{1} z\right) d \mu(z)=\int_{M} H_{t}^{M}\left(z, h_{2} z\right) d \mu(z)
$$

hence

$$
\operatorname{Tr}\left(H_{t}^{M_{i}}\right)=\sum_{[g]} \frac{\left|[g] \cap H_{i}\right|}{\left|H_{i}\right|} \int_{M} H_{t}^{M}(z, g z) d \mu(z) .
$$

Conclude that M_{1} and M_{2} are isospectral if

$$
\left|[g] \cap H_{1}\right|=\left|[g] \cap H_{2}\right|
$$

for every $g \in G$. If this holds we say that H_{1} and H_{2} are almost conjugate in G. Check that if H_{1} and H_{2} are conjugate in G then they are almost conjugate.
(5) Show that $H_{1}=\left(\begin{array}{cc}1 & * * \\ 0 & * \\ 0 & *\end{array}\right), H_{2}=H_{1}^{T}$ are almost conjugate but not conjugate in $G=$ $\mathrm{SL}_{3}(\mathbb{Z} / 2 \mathbb{Z})$.

References

[1] T. Sunada, Riemannian coverings and isospectral manifolds. Ann. Math. 121 (1985).

