EXERCISES 1 ISOMETRIES AND FUNDAMENTAL DOMAINS

- (1) Let $\gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ be an element of $PSL_2(\mathbb{R})$ different from the identity. Show that
 - γ has 1 fixed point in \mathbb{H} iff |a+d| < 2;
 - γ has 1 fixed point in $\hat{\mathbb{R}} = \mathbb{R} \cup \{\infty\}$ iff |a+d| = 2;
 - γ has 2 distinct fixed points in \mathbb{R} iff |a+d| > 2.

We say that γ is elliptic/parabolic/hyperbolic (respectively).

Show that γ is conjugate (in G) to some k_{θ} if γ elliptic, n_x if γ is parabolic, a_y if γ is hyperbolic.

- (2) Let Γ be a Fuchsian group and $M = \Gamma \setminus \mathbb{H}$ a hyperbolic surface. Show that there is a one-to-one correspondence between the set of conjugacy classes (in Γ) of hyperbolic elements in Γ and closed geodesics on M.
- (3) In this exercise you will show that every discrete subgroup $\Gamma < \text{PSL}_2(\mathbb{R})$ that acts properly discontinuously on \mathbb{H} admits a fundamental domain. For this fix $z_0 \in \mathbb{H}$ (such that $\text{Stab}_{\Gamma}(z_0) = \{e\}$) and consider the *Dirichlet domain*

$$\mathcal{D} = \bigcap_{\substack{\gamma \in \Gamma \\ \gamma \neq e}} \{ z \in \mathbb{H} : d_{\mathbb{H}}(z, z_0) < d_{\mathbb{H}}(z, \gamma z_0) \}.$$

(a) Sketch \mathcal{D} .

- (b) Prove that $\mathbb{H} = \bigcup_{\gamma \in \Gamma} \gamma \overline{\mathcal{D}}$ and $\gamma \mathcal{D} \cap \mathcal{D} = \emptyset$ if $\gamma \neq e$.
- (4) Suppose that \mathcal{F} is a fundamental domain for Γ and let Γ^* be the group generated by the set

$$S = \{ \gamma \in \Gamma \setminus \{ e \} : \gamma \overline{\mathcal{F}} \cap \overline{\mathcal{F}} \neq \emptyset \}.$$

Show that $\Gamma = \Gamma^*$.

(5) Consider a hyperbolic triangle \mathcal{T}_0 with a vertex at $i\infty$ (with corresponding inner angle 0) and the two other vertices on the unit circle $S^1 \cap \mathbb{H}$ (with corresponding inner angles α and β .

(a) Show that

$$\mu(\mathcal{T}_0) = \int_{\mathcal{T}_0} \frac{dxdy}{y^2} = \pi - \alpha - \beta.$$

- (b) Deduce that any hyperbolic triangle with inner angles α, β, γ has area $\pi \alpha \beta \gamma$.
- (6) Let \mathcal{T} be a hyperbolic triangle with inner angles π/a , π/b , π/c and let Γ^* be the group generated by the reflections across each side. Find sufficient conditions on a, b, c for Γ^* to be discrete. Deduce that $\Gamma = \Gamma^* \cap PSL_2(\mathbb{R})$ is a Fuchsian group.

The *Poincaré polygon theorem* determines under which conditions a convex hyperbolic polygon with an even number of sides is the fundamental domain of a Fuchsian group.