Université de Montréal Exercises for Lecture 2 June 13, 2023
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2. For 51,1, the generalized McShane identity in this case is in the form:
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Here are some steps:

(a) Argue, as in the case where L = 0, that
[e.e]
L-Vi1(L) = / x-D(L,x,z)d.
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(b) Show that
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(c) Use the fact that V11 = %2 to finish the proof.

3. For X € M;; and L > 0, let N(X, L) be the number of closed curves in X of length at
most L. Calculate the average value of N (X, L) over My 1:
1

v N(X, L) dyo(X).
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4. We say two pants decompositions P and P’ differ by an elementary move if
P:{al,...,ai,...,agg_g}, P/:{041,...,042,...,0439_3}, i(ai,a;) §2.

Show that any pants decomposition can be transformed to any other pants decomposi-
tion using a sequence of elementary moves. Take as a black box the fact that the curve
graph C(S) is connected. The curve graph is a graph whose vertices are curves on S
and edges are pairs of disjoint curves.



