1. Show that

$$
V_{1,1}=2 \int_{0}^{\infty} \frac{\ell}{1+e^{\ell}} d \ell=\frac{\pi^{2}}{6}
$$

Hint: $\frac{1}{1+e^{\ell}}=\frac{e^{-\ell}}{1+e^{-\ell}}=\sum_{n=1}^{\infty}(-1)^{(n-1)} e^{-n \ell}$.
2. For $S_{1,1}$, the generalized McShane identity in this case is in the form:

$$
\sum_{\gamma} \mathcal{D}\left(L, \ell_{\gamma}(X), \ell_{\gamma}(X)\right)=L
$$

where
$\mathcal{D}(x, y, z)=2 \log \left(\frac{e^{x / 2}+e^{(y+z) / 2}}{e^{-x / 2}+e^{(y+z) / 2}}\right) \quad$ and $\quad \frac{\partial}{\partial L} \mathcal{D}(L, x, x)=\frac{1}{1+e^{x-L / 2}}+\frac{1}{1+e^{x+L / 2}}$.
Use this to prove that

$$
V_{1,1}(L)=\frac{L^{2}}{24}+\frac{\pi^{2}}{6}
$$

Here are some steps:
(a) Argue, as in the case where $L=0$, that

$$
L \cdot V_{1.1}(L)=\int_{0}^{\infty} x \cdot \mathcal{D}(L, x, x) d x
$$

(b) Show that

$$
\frac{\partial}{\partial L} L \cdot V_{1.1}(L)=\frac{L^{2}}{8}+\frac{\pi^{2}}{6}
$$

(c) Use the fact that $V_{1,1}=\frac{\pi^{2}}{6}$ to finish the proof.
3. For $X \in M_{1,1}$ and $L>0$, let $N(X, L)$ be the number of closed curves in X of length at most L. Calculate the average value of $N(X, L)$ over $M_{1,1}$:

$$
\frac{1}{V_{1,1}} \int_{M_{1,1}} N(X, L) d_{\mathrm{Vol}}(X)
$$

4. We say two pants decompositions P and P^{\prime} differ by an elementary move if

$$
P=\left\{\alpha_{1}, \ldots, \alpha_{i}, \ldots, \alpha_{3 g-3}\right\}, \quad P^{\prime}=\left\{\alpha_{1}, \ldots, \alpha_{i}^{\prime}, \ldots, \alpha_{3 g-3}\right\}, \quad i\left(\alpha_{i}, \alpha_{i}^{\prime}\right) \leq 2
$$

Show that any pants decomposition can be transformed to any other pants decomposition using a sequence of elementary moves. Take as a black box the fact that the curve graph $\mathcal{C}(S)$ is connected. The curve graph is a graph whose vertices are curves on S and edges are pairs of disjoint curves.

