• Prove that, for $f(z) = \frac{az+b}{cz+d}$, $a, b, c, d \in \mathbb{R}$ and ad - bc = 1, we have

$$\frac{1}{\Im z} = \frac{|f'(z)|}{\Im f(z)} \qquad \text{where} \qquad \Im(x+yi) = y$$

Therefore, $PSL(2, \mathbb{R})$ acts by isometries on the upper-half plane \mathbb{H}^2 .

- Show that $PSL(2, \mathbb{R})$ is exactly the group of orientation preserving isometries of \mathbb{H}^2 . Hint: Show that, for every d > 0 and every two points $x, y \in H^2$ whose distance is d there is a linear fractional transformation that sends x to i and y to $e^d i$. Then show that every orientation preserving isometry that fixes two points in \mathbb{H}^2 is the identity.
- Prove that the universal cover of every complete hyperbolic surface X is isometric to \mathbb{H}^2 . Here are some steps:
 - Fix a point $x \in X$ and a chart (U_0, ϕ_0) around x. Every path in X connecting x to y can be covered by local charts $(U_0, \phi_0), \ldots, (U_k, \phi_k)$. To this path we associate the point

$$\left(\prod_{i=0}^{k-1} (\phi_i \phi_{i+1}^{-1})\right) \phi_k(y)$$

Note that $(\phi_i \phi_{i+1}^{-1})$ is a global isometry of \mathbb{H}^2 .

- This association does not depend on the charts used to cover the path or on the homotopy class of the path. Hence it defines a map from \tilde{X} to \mathbb{H}^2 .
- The map is 1-1 since homotopy between arcs in \mathbb{H}^2 can be pulled back to homotopy between arcs in X.
- The map in onto since the universal cover is complete.
- Prove that the lift of an essential curve on X to \mathbb{H}^2 has two end points that are the fixed points of a loxodromic element in $PSL(2, \mathbb{R})$. Therefore, every curve on X has a unique geodesic representative.
- Prove that for every 3 positive real number a, b, c > 0, there exists a unique right-angled hyperbolic hexagon where the length of alternative edges are given by a, b and c. Use this to show that every pair of pants has a reflection symmetry and is a union of 2 identical hexagons.
- Let S be a surface of genus g with b boundary components. Then the number of curves in any pants decomposition is 3g 3 + b. Therefore, the Teichmüller space of complete hyperbolic metrics of finite area on the interior of S has dimension 6g 6 + 2b.