- Prove that, for $f(z)=\frac{a z+b}{c z+d}, a, b, c, d \in \mathbb{R}$ and $a d-b c=1$, we have

$$
\frac{1}{\Im z}=\frac{\left|f^{\prime}(z)\right|}{\Im f(z)} \quad \text { where } \quad \Im(x+y i)=y
$$

Therefore, $\operatorname{PSL}(2, \mathbb{R})$ acts by isometries on the upper-half plane \mathbb{H}^{2}.

- Show that $\operatorname{PSL}(2, \mathbb{R})$ is exactly the group of orientation preserving isometries of \mathbb{H}^{2}. Hint: Show that, for every $d>0$ and every two points $x, y \in H^{2}$ whose distance is d there is a linear fractional transformation that sends x to i and y to $e^{d} i$. Then show that every orientation preserving isometry that fixes two points in \mathbb{H}^{2} is the identity.
- Prove that the universal cover of every complete hyperbolic surface X is isometric to \mathbb{H}^{2}. Here are some steps:
- Fix a point $x \in X$ and a chart $\left(U_{0}, \phi_{0}\right)$ around x. Every path in X connecting x to y can be covered by local charts $\left(U_{0}, \phi_{0}\right), \ldots,\left(U_{k}, \phi_{k}\right)$. To this path we associate the point

$$
\left(\prod_{i=0}^{k-1}\left(\phi_{i} \phi_{i+1}^{-1}\right)\right) \phi_{k}(y)
$$

Note that $\left(\phi_{i} \phi_{i+1}^{-1}\right)$ is a global isometry of \mathbb{H}^{2}.

- This association does not depend on the charts used to cover the path or on the homotopy class of the path. Hence it defines a map from \tilde{X} to \mathbb{H}^{2}.
- The map is 1-1 since homotopy between arcs in \mathbb{H}^{2} can be pulled back to homotopy between arcs in X.
- The map in onto since the universal cover is complete.
- Prove that the lift of an essential curve on X to \mathbb{H}^{2} has two end points that are the fixed points of a loxodromic element in $\operatorname{PSL}(2, \mathbb{R})$. Therefore, every curve on X has a unique geodesic representative.
- Prove that for every 3 positive real number $a, b, c>0$, there exists a unique right-angled hyperbolic hexagon where the length of alternative edges are given by a, b and c. Use this to show that every pair of pants has a reflection symmetry and is a union of 2 identical hexagons.
- Let S be a surface of genus g with b boundary components. Then the number of curves in any pants decomposition is $3 g-3+b$. Therefore, the Teichmüller space of complete hyperbolic metrics of finite area on the interior of S has dimension $6 g-6+2 b$.

