To register for an ISM course, you must first have you course selection approved by your supervisor and departmental Graduate Program Director. You may then register for the course using the electronic form available on the BCI website (the BCI is the organization that handles inter-university registration). The form will then be sent to the home and host universities' Registrars for approval.
Additional procedures for non-McGill students registering for a course at McGill University:
Once the registration through the BCI website is complete, the student will receive a confirmation. The student must then register for the course at McGill University through the MINERVA registration system.
Important deadlines: Concordia, Laval, McGill, Université de Montréal, UQAM, UQTR, Université de Sherbrooke
Course Schedules:
Online Open Access Courses that were offered by the CRM and the ISM:
Javad Mashreghi, Université Laval
Reproducing Kernel Hilbert Space of Analytic Functions
Course site
Iosif Polterovich, Université de Montréal
Geometric Spectral Theory
Course site
This course is a topic course on elliptic curves, which can be taken as a first or second course on the subject. We will first study elliptic curves (and general curves) over finite fields, proving the Weil conjectures for curves over finite fields, and making the link with random matrix theory. Other related possible topics: the Sato-Tate conjecture and the modularity of complex multiplication elliptic curves.
The course will, for the first part, follow Hartshorne's book Algebraic Geometry, chapter III. We will develop the general theory of derived functors and hyper derived functors, in particular right derived functors of a left exact functor, respectively, left derived functors of a right exact functor. This will provide the conceptual framework for defining sheaf cohomology and de Rham cohomology. We will also study Chech cohomology of a coherent sheaf on scheme and its relationship to sheaf cohomology and de Rham cohomology. Finally, duality theorems for both sheaf cohomology (of quasi coherent sheaves on a projective scheme) and de Rham cohomology will be investigated.
Evaluation: there will be homework assignments during the semester and a final, written exam at the end of it.
Corps (extensions, théorie de Galois, corps finis), Anneaux (noethériens et artiniens, radicaux, idéaux premiers et maximaux, localisation, théorème de Wedderburn, Nullstellensatz), Modules (lemme de Schur, modules projectifs et injectifs, suites exactes, produit tensoriel, catégories).
Ce cours se veut une introduction à la géométrie algébrique et sera divisé en deux parties. Dans la première partie on étudiera les courbes algébriques sur les complexes avec une emphase sur les courbes projectives et lisses (i.e. les surfaces de Riemann compactes). La théorie sera développée en faisant appel simultanément à des notions d'algèbre, d'analyse complexe et de topologie. Voici les thèmes qui seront traités dans cette première partie: courbes affines, courbes projectives, applications holomorphes et méromorphes, fonctions thêtas, courbes hyperelliptiques, revêtements et formule d'Hurwitz, théorème de Riemann-Roch, singularités (noeud, cusp). Dans la deuxième partie du cours nous aborderons la théorie générale des variétés algébriques sur un corps quelconque avec une emphase sur celles qui sont définies sur le corps des complexes. Voici les thèmes qui seront couverts dans cette deuxième partie: anneaux noethériens et ensembles algébriques affines, variétés affines et théorème du Nullstellensaz de Hilbert, variétés projectives, anneaux des coordonnées affines et homogènes, morphismes et applications birationnelles, topologie de Zariski et équivalence de catégorie pour le cas affine.
• Categories and functors, adjoint and equivalence, tensor products, localization of rings and module, limits.
• Affine schemes. Integral extensions.
• Noetherian and artinian rings and modules. Hilbert’s basis theorem, Noether’s normalization lemma and Hilbert’s Nullstellensatz. The affine space.
• Representations of finite groups.
Nombres et entiers algébriques. Unités. Norme, trace, discriminant et ramification. Base intégrale. Corps quadratiques, cyclotomiques. Groupes de classes. Décomposition en idéaux premiers. Équations diophantiennes.
Lemme de Zorn. Catégories et foncteurs: notions et exemples de base: catégories de structures mathématiques, monoïde, catégorie des ensembles; section, rétraction, exemples géométriques et algébriques. Foncteurs et transformations naturelles: exemples de base, catégories de foncteurs. Équivalence de catégories: exemples de base. Modules. Théorèmes d'homomorphisme et d'isomorphisme. Sommes et produits directs, modules libres. Modules de type fini sur un anneau principal et applications aux formes canoniques des matrices. Modules noethériens et artiniens: exemples et propriétés de base. Modules indécomposables, théorème de Krull-Schmidt. Anneaux et polynômes: nilradical et localisation; élimination classique, ensembles algébriques, théorème des zéros de Hilbert. Théorie des corps: groupe de Galois, résolution par radicaux; indépendance algébrique, degré de transcendance, dimension des ensembles algébriques irréductibles; corps ordonnables, 17<+>e<+> problème de Hilbert.
We will develop local and global class field theory through the lenses of Galois cohomology. We will spend a substantial amount of time developing from scratch the cohomology of discrete modules for a profinite group and only then move towards the intended arithmetic target. As a background, some earlier exposure to algebraic number theory and Galois theory would be helpful.
We will begin considering several notions of height (naive height, Weil height, Neron-Tate height, dynamical height), which are quantitative measurements for the "complexity" of an algebraic number. With this notion we will explore several techniques to prove finiteness results in the theory of Diophantine equations. We will follow mostly (but not only) the book of Bombieri—Gübler "Heights in Diophantine Geometry".
Completion of the topics of MATH 570. Rudiments of algebraic number theory. A deeper study of field extensions; Galois theory, separable and regular extensions. Semi-simple rings and modules. Representations of finite groups
This course is cross-listed. Undergraduate students should register for MATH 596 and graduate students for MATH 726.
The course will be devoted to the emerging subject of unlikely intersections. This is a topic in arithmetic geometry — the discipline that merges number theory and algebraic geometry — and deals with phenomena where one does not expect an intersection between certain subvarieties of a given variety and, in light of this, when such an intersection exists seeks to provide a classification of the conditions when such unlikely phenomena occur. It is quite similar in spirit to the purely algebraic geometrical term of excess intersection. Some of the outstanding conjectures and theorems in this area are the Andre-Oort conjecture (now a theorem) and the Zilber-Pink conjecture.
The course will provide a gentle introduction to these topics. The exact syllabus will be determined so as to accommodate the audience. The course will also be accessible to motivated undergraduate students and so a lot of background material will be provided during the course. Strong background in algebra at the level of the undergraduate courses will be assumed and background in algebraic number theory and algebraic geometry is desired but not required. Undergraduates wishing to take the course are advised to contact me during the Fall semester.
The course will be based on the book Zannier: Some problems of unlikely intersections in arithmetic and geometry, Annals of Mathematical Studies, vol. 181. Although this should be thought of more as a road map than a text book.
The method of evaluation in this course will be based on a final paper, a presentation, and exercises.
Représentations des groupes, algèbre d’un groupe fini, table de caractères, représentations des groupes symétriques, groupes de Lie, algèbre de Lie, représentations des groupes classiques.
Distribution des nombres premiers. Fonction zêta de Riemann et fonctions-L de Dirichlet. Le théorème des nombres premiers, et de Bombieri-Vinogradov. La répartition des nombres premiers consécutifs.
Représentations de carquois, représentations projectives et injectives, algèbres et modules, algèbres de carquois liés, théorie d'Auslander-Reiten.
La théorie de la représentation des groupes et une théorie algébrique dont les ramifications s’étendent à de très nombreux domaines des mathématiques ainsi qu’à la Physique te à la Chimie. L’apprentissage de cette théorie permettra entre autre à l’étudiant d’appréhender d’autres théories algébriques de la représentation.
Descripteur : Représentations linéraires des groupes finis. Sous-représentations, théorème de Mashke; représentations irréductibles. Théorie des caractères. Décomposition en composantes isotypiques. Produits tensoriels; représentation induites. Représentations linéaires des groupes compacts. Exemples: groupes cycliques, diédraux, symétriques: tores, groupes de rotations.
Starting with classical inequalities for convex sets and functions, the course aims to present famous geometric inequalities like the Brunn-Minkowski inequality and its related functional form, Prekopa-Leindler, the Blaschke-Santalo inequality, the Urysohn inequality, as well as more modern ones such as the reverse isoperimetric inequality, or the Brascamp-Lieb inequality and its reverse form. In the process, we will touch upon log-convex functions, duality for sets and functions and, generally, extremum problems.
Measure and integration, measure spaces, convergence theorems, Radon-Nikodem theorem, measure and outer measure, extension theorem, product measures, Hausdorf measure, LP-spaces, Riesz theorem, bounded linear functionals on C(X), conditional expectations and martingales.
Abstract theory of measure and integration: Borel-Cantelli lemmas, regularity of measures, product measures, Fubini-Tonelli theorem, signed measures, Hahn and Jordan decompositions, Radon-Nikodym theorem, differentiation in Rn.
We shall discuss the following topics (as time permits). Fourier series: summability in norm, pointwise convergence, order of magnitude of Fourier coefficients, L2 theory, absolutely convergent Fourier series, convergence in norm, convergence and divergence at a point, sets of divergence (if time permits). Interpolation: Riesz-Thorin and Hausdor-Young theorems. Lacunary series. Fourier transforms: FT for L1; L2; Lp, tempered distributions, almost-periodic functions, Payley-Wiener theorems.
Possible additional topics (some of which could be used for presentation): Wirtinger's inequality, Isoperimetric inequality, Poisson summation formula, applications to number theory (e.g. theta functions and Gaussian sums), compact operators, applications to probability, applications to PDE (e.g. solving heat and wave equations), Heisenberg uncertainty principle, harmonic analysis on Abelian groups, representation theory, random Fourier series.
Ensembles mesurables, mesure de Lebesgue, théorèmes de Lusin et de Egorov, intégrale de Lebesgue, théorème de Fubini, espaces Lp, éléments de la théorie ergodique, mesure et dimension de Hausdorff, ensembles fractals.
Espaces d’Hilbert, de Banach, théorèmes de Hahn-Banach, de Banach-Steinhaus et du graphe fermé, topologies faibles, espaces réflexifs, décomposition spectrale des opérateurs auto-adjoints compacts.
While graphs are intuitively and naturally represented by vertices and edges, such representations are limited in terms of their analysis, both theoretically and practically (e.g., when implementing graph algorithms). A more powerful approach is yielded by representing them via appropriate matrices (e.g., adjacency, diffusion kernels, or graph Laplacians) that capture intrinsic relations between vertices over the "geometry" represented by the graph structure. Spectral graph theory leverages such matrices, and in particular their spectral and eigendecompositions, to study the properties of graphs and their underlying intrinsic structure. This study leads to surprising and elegant results, not only from a mathematical standpoint, but also in practice with tractable implementations used, e.g., in clustering, visualization, dimensionality reduction, and manifold learning, and geometric deep learning. Finally, since nearly any modern data nowadays can be modelled as a graph, either naturally (e.g., social networks) or via appropriate affinity measures, and therefore the notions and tools studied in this course provide a powerful framework for capturing and understanding data geometry in general.
Accessibilité de langue : The course will accommodate anglophone students who are interested in taking it, as well as francophone students.
On utilisera la mécanique classique et le principe de moindre action pour s'initier aux concepts de base du calcul des variations, notamment les équations d'Euler-Lagrange et les équations d'Hamilton. On transposera alors ces notions en géométrie en abordant plusieurs exemples intéressants: géodésiques, surfaces minimales, métriques à courbure constante, applications harmoniques, flot gradient, théorie de jauge. On se concentrera alors sur les surfaces minimales en s'initiant à une méthode systématique pour les construire: la théorie géométrique de la mesure.
The course is an introduction to the classical theory of partial differential equations (PDEs). The topics presented will be: first order linear and quasi-linear equations; linear second order PDEs (Laplace, Heat, Wave equations), maximum principles, properties of harmonic functions, accompanied by guided independent study, based on individual mathematical interests and areas of study, in which graduate students will explore further topics chosen from: nonlinear elliptic and parabolic PDEs (geometric properties of solutions, gradient flows, methods of subsolutions and supersolutions), or the use of calculus of variations and fixed point methods.
Topics include: Hilbert spaces, Banach spaces, linear functionals, dual spaces, bounded linear operators, adjoints; the Hahn-Banach, Baire caterogy, Banach-Steinhaus, open mapping and closed graph theorems; compact operators, the Fredholm alternative, the spectral theorem; the weak/weak* topologies.
Mathematical logic studies mathematical objects by formalizing them in a precise “mathematical language” and then studying how these objects can be defined (or expressed) in this language.
The following concepts will be covered: mathematical structure, isomorphism, logical implication, formal deduction, countable and uncountable sets, Peano Arithmetic, computable set, computable function. The key results which will be covered are: The Completeness Theorem, The Compactness Theorem, Cantor’s Theorem, Godel’s Incompleteness Theorem.
The syllabus can be found here: https://sites.google.com/view/assaf-shani/teaching
Review of the basic theory of Banach and Hilbert spaces, Lp spaces, open mapping theorem,closed graph theorem, Banach-Steinhaus theorem, Hahn-Banach theorem, weak and weak-* convergence, weak convergence of measures, Riesz representation theorems, spectral theorem for compact self-adjoint operators, Fredholm theory, spectral theorem for bounded self-adjoint operators, Fourier series and integrals, additional topics.
The first part of the course will be on Riemann surfaces (definition, examples, holomorphic functions and their properties, the uniformization theorem and its consequences, hyperbolic geometry) and the second part will be on the theory of their deformations (Fenchel-Nielsen coordinates, quasiconformal maps, extremal length, Beltrami and quadratic differentials, Teichmüller's theorem).
Le laplacien et la théorie elliptique. Espaces de Sobolev. Éléments de la géométrie spectrale. Applications analytiques et topologiques à la géométrie riemannienne, symplectique ou kahlerienne.
Ce cours est une introduction à la théorie des surfaces de Riemann. Le préalable exigé est une connaissance de base de l'analyse complexe.
Surfaces de Riemann compactes. Structures complexes engendrées par une métrique. Applications holomorphes. Revêtements ramifiés de la sphère de Riemann, formule de Riemann-Hurwitz. Topologie et formes différentielles sur les surfaces de Riemann. Différentielles abéliennes, Jacobien. Fonctions méromorphes sur les surfaces de Riemann compactes. Théorème d'Abel. Théorème de Riemann-Roch. Fonctions théta, fonctions de Weierstrass. Aperçu des courbes algébriques.
Examples of applications of statistics and probability in epidemiologic research. Sources of epidemiologic data (surveys, experimental and non-experimental studies). Elementary data analysis for single and comparative epidemiologic parameters.
Statistical methods for multinomial outcomes, overdispersion, and continuous and categorical correlated data; approaches to inference (estimating equations, likelihood-based methods, semi-parametric methods); analysis of longitudinal data; theoretical content and applications.
Multivariable regression models for proportions, rates, and their differences/ratios; Conditional logistic regression; Proportional hazards and other parametric/semi-parametric models; unmatched, nested, and self-matched case-control studies; links to Cox's method; Rate ratio estimation when "time-dependent" membership in contrasted categories.
Advanced applied biostatistics course dealing with flexible modeling of non-linear effects of continuous covariates in multivariable analyses, and survival data, including e.g. time-varying covariates and time-dependent or cumulative effects. Focus on the concepts, limitations and advantages of specific methods, and interpretation of their results. In addition to 3 hours of weekly lectures, shared with epidemiology students, an additional hour/week focuses on statistical inference and complex simulation methods. Students get hands-on experience in designing and implementing simulations for survival analyses, through individual term projects.
Algorithmic and structural approaches in combinatorial optimization with a focus upon theory and applications. Topics include: polyhedral methods, network optimization, the ellipsoid method, graph algorithms, matroid theory and submodular functions.
Lemme de Zorn. Catégories et foncteurs: notions et exemples de base: catégories de structures mathématiques, monoïde, catégorie des ensembles; section, rétraction, exemples géométriques et algébriques. Foncteurs et transformations naturelles: exemples de base, catégories de foncteurs. Équivalence de catégories: exemples de base. Modules. Théorèmes d'homomorphisme et d'isomorphisme. Sommes et produits directs, modules libres. Modules de type fini sur un anneau principal et applications aux formes canoniques des matrices. Modules noethériens et artiniens: exemples et propriétés de base. Modules indécomposables, théorème de Krull-Schmidt. Anneaux et polynômes: nilradical et localisation; élimination classique, ensembles algébriques, théorème des zéros de Hilbert. Théorie des corps: groupe de Galois, résolution par radicaux; indépendance algébrique, degré de transcendance, dimension des ensembles algébriques irréductibles; corps ordonnables, 17<+>e<+> problème de Hilbert.
Étude approfondie des séries génératrices en combinatoire. Caractérisation des séries rationnelles algébriques. D-finies. Séries associées aux espèces de structures: séries génératrices et séries indicatrices, théorèmes de substitution. Application au dénombrement de types de structures et de structures asymétriques. Théorème de dissymétrie pour les arbres. Décompositions moléculaire et atomique d'une espèce. Foncteurs analytiques. Liens avec les fonctions symétriques et les représentations linéaires du groupe symétrique.
Représentations de carquois, algèbres de dimension finie, systèmes de racines, théorème de Gabriel sur les carquois de représentation finie.
Convex sets and functions, subdifferential calculus, conjugate functions, Fenchel duality, proximal calculus. Subgradient methods, proximal-based methods. Conditional gradient method, ADMM. Applications including data classification, network-flow problems, image processing, convex feasibility problems, DC optimization, sparse optimization, and compressed sensing.
La théorie de la représentation des groupes et une théorie algébrique dont les ramifications s’étendent à de très nombreux domaines des mathématiques ainsi qu’à la Physique te à la Chimie. L’apprentissage de cette théorie permettra entre autre à l’étudiant d’appréhender d’autres théories algébriques de la représentation.
Descripteur : Représentations linéraires des groupes finis. Sous-représentations, théorème de Mashke; représentations irréductibles. Théorie des caractères. Décomposition en composantes isotypiques. Produits tensoriels; représentation induites. Représentations linéaires des groupes compacts. Exemples: groupes cycliques, diédraux, symétriques: tores, groupes de rotations.
In this course, we will examine a number of important algorithms arising in combinatorics. The two main themes will be tableau combinatorics and combinatorics of graphs. In the setting of tableau combinatorics, we will look at jeu de taquin and some of its variants, and the Robinson--Schensted--Knuth correspondence. In our study of graph theory, we will look at problems around matchings and flows in graphs.
Coxeter groups play a fundamental role in several areas of mathematics: they occur as Weyl groups in Lie theory, Kazhdan-Lusztig theory, for Cluster algebras or in algebraic geometry; they are the discrete reflection groups acting on spaces of constant curvature in geometry and they are fundamental to define buildings in geometric group theory. Properties of these groups are often key to a deep understanding of the main relevant structures for these areas.
We will start by covering the basics of Coxeter group theory: exchange/deletion conditions, Matsumoto theorem, geometric representations and root systems. We will apply the theory to show that any discrete group generated by reflections in spherical, Euclidean or hyperbolic geometry is a Coxeter group.
Then we will be discussing the interplay between root systems, the weak order, the Bruhat order and the Cayley graph with its word-metric. We will end this part by showing that Coxeter groups are automatic (Brink-Howlett theorem).
The final part of this class will be dedicated to current research developments. In particular, we will be focusing our attention on Garside shadows, Shi arrangements and their relationship with the (still open) word problem in Artin-Tits (braid) groups and the bi-automaticity of Coxeter groups.
Bibliography (selected)
Books
Articles
Bibliography (Extended)
L'objectif du cours est de présenter les structures discrètes standards et les principales méthodes d'énumération. Les sujets suivants seront présentés :
- Structures discrètes : permutations, dérangements, nombres de Sterling, graphes, partages, diagrammes de Ferrers et tableaux de Young, mots de Dyck, nombres de Catalan, partitions d'ensembles et nombres de Bell, polyominos;
- Méthodes d'énumération : principe de bijection et d'inclusion-exclusion, récurrences, séries génératrices ordinaires et exponentielles, théorie de Polya, action de groupe, lemme de Burnside, polynômes indicateurs de cycles.
Dynamical systems, phase space, limit sets. Review of linear systems. Stability. Liapunov functions. Stable manifold and Hartman-Grobman theorems. Local bifurcations, Hopf bifurcations, global bifurcations. Poincare Sections. Quadratic maps: chaos, symbolic dynamics, topological conjugacy. Sarkovskii's theorem, periodic doubling route to chaos. Smale Horseshoe.
Flots discrets et continus. Équations différentielles non linéaires, techniques classiques d’analyse de dynamique, existence et stabilité de solutions, variétés invariantes, bifurcations, formes normales, systèmes chaotiques. Applications moderne.
Basic point-set topology, including connectedness, compactness, product spaces, separation axioms, metric spaces. The fundamental group and covering spaces. Simplicial complexes. Singular and simplicial homology. Part of the material of MATH 577 may be covered as well.
A Lie group is a manifold with a group structure, for example the rotation group O(n). Lie groups are used widely throughout mathematics, including in differential geometry, number theory, and mathematical physics. This course will be an introduction to Lie groups, Lie algebras, and their representations. We will cover the following topics:
Homologie et co-homologie singulières. Fibrations, co-fibrations. Groupes d’homotopie. CW-complexes. Obstructions. Suites spectrales. Produits. Dualité de Poincaré. Théorème du point fixe de Lefschetz. Groupes unitaires et classes de Chern.
On utilisera la mécanique classique et le principe de moindre action pour s'initier aux concepts de base du calcul des variations, notamment les équations d'Euler-Lagrange et les équations d'Hamilton. On transposera alors ces notions en géométrie en abordant plusieurs exemples intéressants: géodésiques, surfaces minimales, métriques à courbure constante, applications harmoniques, flot gradient, théorie de jauge. On se concentrera alors sur les surfaces minimales en s'initiant à une méthode systématique pour les construire: la théorie géométrique de la mesure.
Rappels de topologie et d'analyse. Variétés et applications différentiables, fibré tangent et différentielle d'une application. Théorème du rang constant et formes normales. Partition de l'unité et applications. Transversalité, théorème de Sard et énoncé du théorème de Thom. Tenseurs et formes différentielles, dérivée de Lie et dérivée extérieure. Intégration sur les variétés, théorème de Stokes. Distributions, théorème de Frobenius, feuilletages, Fibrés vectoriels et principaux, les connexions comme systèmes différentiels.
The course focuses on a development of Hodge theory, starting with a curve but moving rapidly to that on a compact Kähler manifold. This will include the basic theory of Kähler varieties, their deformation and degeneration. Important examples are then discussed, showing their role in the classification of algebraic varieties and in the study of their moduli spaces, including an introduction to Hodge's theory of variations of structures. We will also touch on analytical tools such as hyperbolicity to be able to address some global problems in the subject. We will aim to end with notions of stability, the Donaldson-Uhlenbeck-Yau correspondence and its generalizations, including some rudiments of non-abelian Hodge theory and their applications.
Studying representations of the fundamental group has had a long tradition in 3-manifold topology. SL(2,C) representations have been particularly well-studied because of their computational accessibility and connection to hyperbolic geometry. This course aims to discuss some aspects of this theory. The first part of the course will focus on 3-dimensional hyperbolic geometry, covering topics such as Mostow rigidity and Thurston's hyperbolic Dehn surgery theorem. The second part of the course will focus on Culler and Shalen's character variety machinery, with an eye towards proving the cyclic surgery theorem. The prerequisites for the class are basic algebraic geometry (varieties, valuations) and basic algebraic topology (fundamental group, homology).
Basic properties of differentiable manifolds, tangent and cotangent bundles, differential forms, de Rham cohomology, integration of forms, Riemannian metrics, geodesics, Riemann curvature.
The course will cover the following topics: free group and its subgroups, uniqueness of decomposition into free product. Groups acting on trees, splitting into free product with amalgamation. Bass-Serre theory. Cayley graph, SL(2,Z), isometry groups of the hyperbolic plane. Isoperimetric inequality, word problem, Dehn’s algorithm. Small cancellation groups. Quasi-isometries and quasi-geodesics. Groups hyperbolic in the sense of Gromov. Boundaries of hyperbolic groups, Tits alternative. Ends of groups. Gromov’s theorem on groups with polynomial growth.
Le laplacien et la théorie elliptique. Espaces de Sobolev. Éléments de la géométrie spectrale. Applications analytiques et topologiques à la géométrie riemannienne, symplectique ou kahlerienne.
Généralités: définitions et exemples de surfaces de Riemann. Les applications holomorphes et méromorphes, leurs propriétés fondamentales. Topologie (classification des surfaces, cohomologie de Cech). Théorie algébrique: faisceaux et cohomologie. Fibrés et formes différentielles. Résolution fine d'un faisceau, théorèmes de De Rham et Dolbeault. Théorèmes de finitude. Diviseurs et fibrés en droites. Théorème de Riemann-Roch. Dualité de Serre. Théorème de Abel-Jacobi. Théorie géométrique: théorème d'uniformisation. Classification des courbes elliptiques (surfaces de Riemann de genre 1). Métrique de Poincaré et surfaces hyperboliques. Notions de théorie de Teichmüller.
Ce cours est proposé comme une introduction à la théorie des groupes et leures algèbres de Lie. Nous couvrirons des sujets classiques, incluant la corréspondence entre les groupes de Lie connexes et simplement connexes et les algèbres de Lie ; sous-groupes fermés ; la représentation adjointe ; groupes de Lie compacts et formes bi-invariantes ; algèbres de Lie nilpotentes, résolubles et semi-simples ; les théorèmes de Lie et de Cartan ; formes de Killing ; décomposition des racines ; classification des algèbres de Lie simples ; algèbres de Lie réductives et décomposition de Cartant ; sous-groupes compacts maximaux.
The course presents an introduction to statistical estimation techniques for insurance data. It is the natural continuation of Risk Theory, which discusses the probabilistic aspects of insurance portfolios. Two approaches to credibility theory are discussed: limited fluctuations and greatest accuracy. Topics covered include American, Bayesian and exact credibility. Bühlmann, Bühlmann-Straub, hierarchical and regression credibility models are derived. Generalized linear models and the issue of robustness will also be discussed. The course prepares for the Credibility part of the Society of Actuaries Exam STAM and the Casualty Actuarial Society Exam MAS II. It also covers more advanced material, as needed to use modern credibility with real insurance data. A grade of B or better is needed to apply to the Canadian Institute of Actuaries for exemption of Exam STAM (see Accredited Programs (concordia.ca).
This course focuses on computational aspects, implementation, continuous- time models, and advanced topics in Mathematical and Computational Finance. Topics considered include Brownian motion and stochastic calculus; continuous-time finance; Black-Scholes model; interest rate models; Monte-Carlo methods; numerical solution of PDEs; volatility; hedging; exotic derivatives; risk-management; and other topics (time permitting).
Structures à terme, processus stochastiques, modèles et produits dérivés de taux d'intérêt, immunisation et appariement, produits dérivés de crédit, titres adossés à des créances hypothécaires, volatilité.
Ce cours vise à fournir à l'étudiant les fondements nécessaires aux processus stochastiques de sorte qu'il puisse les appliquer dans les différents domaines de la finance: ingénierie financière, gestion des risques, gestion de portefeuille et finance corporative. Ce cours permettra ainsi à l'étudiant de se familiariser, grâce à la programmation dans MATLAB, avec les différents outils quantitatifs nécessaires en finance.
Mesures de risques. Théorie de la ruine en temps discret et continu. Mouvement brownien et temps de premier passage. Modélisation du risque de crédit. Modélisation de la dépendance (copules) avec applications actuarielles et financières.
Basics concepts in quantitative risk management: types of financial risk, loss distribution, risk measures, regulatory framework. Empirical properties of financial data, models for stochastic volatility. Extreme-value theory models for maxima and threshold exceedances. Multivariate models, copulas, and dependence measures. Risk aggregation.
The problem of fitting probability distributions to loss data is studied. In practice, heavy tailed distributions are used (i.e. skewed to the right) which require some special inferential methods. The problem of point and interval estimation, goodness of fit tests are studied in detail under a variety of inferential procedures (empirical, maximum likelihood) and of sampling designs (individual/grouped data, truncation, censoring). Loss data sets serve as illustration of the methods.
This course is a rigorous introduction to the theory of mathematical and computational finance. Topics include multi-period binomial model; state prices; change of measure; stopping times; European and American derivative securities; interest-rate models; interest-rate derivatives; hedging; and convergence to the Black-Scholes model.
This course is an introduction to simulation and Monte Carlo estimation. The following topics will be covered:
1. Simulation of random variables/vectors from their (joint) probability mass function/density function: methods of inverse-transform, accept-reject, composition and factorization (for random vectors).
2. Simulation of homogeneous and non-homogeneous Poisson processes in 1-dimension: methods of inverse-transform and thinning.
3. Some discrete-event simulation models, e.g., 1-server and 2-server queues, insurance-risk model, machine-repair model.
4. Some variance-reduction techniques: methods of anti-thetic variables, control variables, conditional expectation, stratified sampling.
The software R will be extensively used to write simulation codes and will be demonstrated over a few classes.
The topics in this Risk Theory course include: aggregate risk models, homogenous and nonhomogenous discrete-time Markov chain models, Poisson processes, coinsurance, effects of inflation on losses, risk measures, dependence (copulas), development triangles and reserving. The emphasis is on the probabilistic aspects (stochastic processes) although some estimation (inference) questions will also be discussed.
Modèle individuel et collectif du risque. Algorithmes récursifs et approximations stochastiques. Problèmes de rétention et de réassurance. Théorie de la ruine. Primes et ordonnancement des risques. Développements récents de la théorie du risque.
Notions de probabilités avancées et martingales. Calcul stochastique et diffusions d'Itô. Théorie formelle de l'arbitrage en temps discret et en temps continu. Théorèmes fondamentaux de la finance. Tarification de produits dérivés sur actions et sur taux d'intérêt. Applications actuarielles et autres sujets avancés.
Modèles de mortalité stochastiques. Modèles de Lee Carter et extensions. Mathématiques actuarielles fondées sur les modèles de mortalité stochastiques. Risque de longévité. Applications d'assurances vie et de rentes liées à des fonds distincts. Rentes variables.
Modèles multivariés de risques sur plusieurs périodes avec dépendance temporelle. Théorie avancée sur les mesures de risque : mesures convexes et quasi convexes de risque, mesures de risque avec distorsion, intégrale de Choquet, allocation du risque, indices de risque. Notions avancées de partage de risque. Modèles de dépendance à grandes dimensions.
Les thèmes abordés sont les suivants :
Ce cours est une introduction au calcul stochastique pour les applications en finance mathématique:
1. Rappels de théorie des probabilités
2. Mouvement brownien et martingales
3. Intégration stochastique par rapport au mouvement brownien
4. Applications de la Formule d’Itô et Théorèmes de Girsanov
5. Équations différentielles stochastiques et processus de diffusion
6. Si le temps le permet : Introduction à la finance mathématique et au modèle de Black-Scholes-Merton, tarification d’options vanilles et d’options exotiques
This course will cover the theory of differential equations from a rigorous graduate mathematics perspective. Topics related to ordinary differential equations to be covered include proving existence and uniqueness for nonlinear systems, examining linear systems, fundamental solutions, equilibria, periodic solutions, stability, invariant manifolds, and hyperbolic theory. We will be introduced to important theorems that underscore the discipline such as Floquet’s theorem, the Hartman-Grobman theorem, and the stable and centre manifold theorems. The final weeks of the course will be dedicated to boundary value problems and Sturm-Liouville theory.
This course introduces the mathematical foundations of data science. Topics covered tentatively include machine learning basics, rudiments of statistical learning theory, optimal recovery, compressive sensing, elements of optimization theory and deep learning. Although the course will focus on theoretical aspects, it will also include computational illustrations. We will primarily follow the book "Mathematical Pictures at a Data Science Exhibition" by S. Foucart (Cambridge University Press, 2022). The course will include a final individual research project.
Algorithmic and structural approaches in combinatorial optimization with a focus upon theory and applications. Topics include: polyhedral methods, network optimization, the ellipsoid method, graph algorithms, matroid theory and submodular functions.
Development, analysis and effective use of numerical methods to solve problems arising in applications. Topics include direct and iterative methods for the solution of linear equations (including preconditioning), eigenvalue problems, interpolation, approximation, quadrature, solution of nonlinear systems.
Classification and wellposedness of linear and nonlinear partial differential equations; energy methods; Dirichlet principle. Brief introduction to distributions; weak derivatives. Fundamental solutions and Green's functions for Poisson equation, regularity, harmonic functions, maximum principle. Representation formulae for solutions of heat and wave equations, Duhamel's principle. Method of Characteristics, scalar conservation laws, shocks.
Processus de modélisation mathématiques avancés : simulations, estimation de paramètres, interprétation. Utilisation des mathématiques dans un milieu multidisciplinaire (p. ex. oncologie, neurosciences, génétique). Étude de cas et projets appliqués.
The formulation and treatment of realistic mathematical models describing biological phenomena through such qualitative and quantitative mathematical techniques as local and global stability theory, bifurcation analysis, phase plane analysis, and numerical simulation. Concrete and detailed examples will be drawn from molecular, cellular and population biology and mammalian physiology.
Convex sets and functions, subdifferential calculus, conjugate functions, Fenchel duality, proximal calculus. Subgradient methods, proximal-based methods. Conditional gradient method, ADMM. Applications including data classification, network-flow problems, image processing, convex feasibility problems, DC optimization, sparse optimization, and compressed sensing.
Virgule flottante. ÉDOs. Méthodes directes et itératives pour la résolution de systèmes linéaires et non-linéaires. Valeurs propres. ÉDPs elliptiques et paraboliques. Équation de Black-Scholes. Optimisation sans contraintes (MAT 6473 uniquement), Décomposition en valeurs singulières (SVD, MAT 6473 uniquement).
Ce cours est une introduction à la théorie des surfaces de Riemann. Le préalable exigé est une connaissance de base de l'analyse complexe.
Surfaces de Riemann compactes. Structures complexes engendrées par une métrique. Applications holomorphes. Revêtements ramifiés de la sphère de Riemann, formule de Riemann-Hurwitz. Topologie et formes différentielles sur les surfaces de Riemann. Différentielles abéliennes, Jacobien. Fonctions méromorphes sur les surfaces de Riemann compactes. Théorème d'Abel. Théorème de Riemann-Roch. Fonctions théta, fonctions de Weierstrass. Aperçu des courbes algébriques.
This course covers most of the materials in the first seven chapters of Probability and Random Processes by Grimmett and Stirzaker. In particular, it covers topics such as generating and characteristic functions and their applications in random walk and branching process, different modes of convergence and an introduction of martingales.
Probability spaces. Random variables and their expectations. Convergence of random variables in Lp. Independence and conditional expectation. Introduction to Martingales. Limit theorems including Kolmogorov's Strong Law of Large Numbers.
Espace de probabilité, variables aléatoires, indépendance, espérance mathématique, modes de convergence, lois des grands nombres, théorème central limite, espérance conditionnelle et martingales. Introduction au mouvement brownien.
Tribus et variables aléatoires. Théorie de l'intégration: théorème de Lebesgue, espace Lp, théorème de Fubini. Construction de mesures, mesure de Radon. Indépendance. Conditionnement.
This course will introduce a range of random graph processes and of random processes on graphs. I intend to cover the following models and topics, time permitting.
Conditional probability and conditional expectation, generating functions. Branching processes and random walk. Markov chains:transition matrices, classification of states, ergodic theorem, examples. Birth and death processes, queueing theory.
Characteristic functions: elementary properties, inversion formula, uniqueness, convolution and continuity theorems. Weak convergence. Central limit theorem. Additional topic(s) chosen (at discretion of instructor) from: Martingale Theory; Brownian motion, stochastic calculus.
Mouvement brownien, intégrale stochastique, formule d’Itô, équations différentielles stochastiques, théorèmes de représentation, théorème de Girsanov. Formule de Black et Scholes.
Ce cours est une introduction au calcul stochastique pour les applications en finance mathématique:
1. Rappels de théorie des probabilités
2. Mouvement brownien et martingales
3. Intégration stochastique par rapport au mouvement brownien
4. Applications de la Formule d’Itô et Théorèmes de Girsanov
5. Équations différentielles stochastiques et processus de diffusion
6. Si le temps le permet : Introduction à la finance mathématique et au modèle de Black-Scholes-Merton, tarification d’options vanilles et d’options exotiques
This course is an introduction to statistical inference for parametric models. The following topics will be covered:
1. Distribution of functions of several random variables (distribution function and change of variable techniques), sampling distribution of mean and variance of a sample from Normal distribution.
2. Distribution of order statistics and sample quantiles.
3. Estimation: unbiasedness, Cramér-Rao lower bound and efficiency, method of moments and maximum likelihood estimation, consistency, limiting distributions, delta-method.
4. Sufficiency, minimal sufficiency, completeness, UMVUE, Rao-Blackwell and Lehman-Scheffe theorems.
5. Hypothesis-testing: likelihood-ratio tests.
6. Elements of Bayesian estimation and hypothesis-testing.
Text: Introduction to Mathematical Statistics (6th, 7th or 8th Edition), by R.V. Hogg and A.T. Craig, Prentice Hall Inc., 1994. Recommended reading: (for problems, examples etc) Statistical Inference (2nd Edition), by G. Casella and R. L. Berger, Duxbury, 2002. Evaluation: Assignments (4), Midterm exam, Final exam.
This course introduces the mathematical foundations of data science. Topics covered tentatively include machine learning basics, rudiments of statistical learning theory, optimal recovery, compressive sensing, elements of optimization theory and deep learning. Although the course will focus on theoretical aspects, it will also include computational illustrations. We will primarily follow the book "Mathematical Pictures at a Data Science Exhibition" by S. Foucart (Cambridge University Press, 2022). The course will include a final individual research project.
This course introduces multivariate statistical analysis, both theory and methods, with focus on the multivariate Normal distribution. It can be seen as a preparatory course, although not a formal prerequisite, for Statistical Learning. Topics covered include:
Distribution free procedures for 2-sample problem: Wilcoxon rank sum, Siegel-Tukey, Smirnov tests. Shift model: power and estimation. Single sample procedures: Sign, Wilcoxon signed rank tests. Nonparametric ANOVA: Kruskal-Wallis, Friedman tests. Association: Spearman's rank correlation, Kendall's tau. Goodness of fit: Pearson's chi-square, likelihood ratio, Kolmogorov-Smirnov tests. Statistical software packages used.
Multivariate normal and chi-squared distributions; quadratic forms. Multiple linear regression estimators and their properties. General linear hypothesis tests. Prediction and confidence intervals. Asymptotic properties of least squares estimators. Weighted least squares. Variable selection and regularization. Selected advanced topics in regression. Applications to experimental and observational data.
Distribution theory, stochastic models and multivariate transformations. Families of distributions including location-scale families, exponential families, convolution families, exponential dispersion models and hierarchical models. Concentration inequalities. Characteristic functions. Convergence in probability, almost surely, in Lp and in distribution. Laws of large numbers and Central Limit Theorem. Stochastic simulation.
Rare events such as extreme weather phenomena, large insurance claims and financial crashes are of prime concern for society. The aim of this course is to introduce the mathematical and statistical modeling of extremal events.
General introduction to computational methods in statistics; optimization methods; EM algorithm; random number generation and simulations; bootstrap, jackknife, cross-validation, resampling and permutation; Monte Carlo methods: Markov chain Monte Carlo and sequential Monte Carlo; computation in the R language.
Conditional probability and Bayes’ Theorem, discrete and continuous univariate and multivariate distributions, conditional distributions, moments, independence of random variables. Modes of convergence, weak law of large numbers, central limit theorem. Point and interval estimation. Likelihood inference. Bayesian estimation and inference. Hypothesis testing.
Parametric survival models. Nonparametric analysis: Kaplan-Meier estimator and its properties. Covariates with emphasis on Cox's proportional hazards model. Marginal and partial likelihood. Logrank tests. Residual analysis. Homework assignments a mixture of theory and applications. In-class discussion of data tests.
Étude du « bootstrap ». Estimation du biais et de l'écart-type. Intervalles de confiance et tests. Applications diverses, incluant la régression et les données dépendantes. Étude du « jackknife », de la validation croisée et du sous-échantillonnage.
Notions de probabilités. Comportement asymptotique des moments et quantiles échantillonnaux. Normalité asymptotique de transformation; stabilisation de la variance. Loi asymptotique du test du khi-deux. Théorie asymptotique en inférence paramétrique.
Tableaux de contingence. Mesures d'association. Risque relatif et rapport de cote. Tests exacts et asymptotiques. Régression logistique, de Poisson. Modèles log-linéaires. Tableaux de contingence à plusieurs dimensions. Méthodes non paramétriques.
Techniques descriptives. Processus stationnaires. Meilleure prévision linéaire. Modèles ARMA, ARIMA et modèles saisonniers. Estimation et prévision dans les ARMA. Éléments d’analyse spectrale. Modèles ARCH et GARCH.
Processus stochastiques (généralités). Description et caractéristiques des séries chronologiques. Transformées de Fourier. Analyse statistique des séries chronologiques. Analyse spectrale des processus linéaires. Lissage des estimateurs spectraux.
Concepts de base d'un problème de décision statistique et d'analyse bayésienne. Lois apriori et aposteriori. Fonctions de coût. Règles aléatoires, règles de Bayes, règles minimax et maximin. Notions d'admissibilité et de dominance. Exhaustivité. Règles de décision invariantes. Sujets choisis parmi l'estimation de Stein, l'estimation sous contraintes, l'estimation par intervalles et les tests d'hypothèses.
Espérance conditionnelle. Prédiction. Modèles statistiques, familles exponentielles, exhaustivité. Méthodes d'estimation: maximum de vraisemblance, moindres carrés etc. Optimalité: estimateurs sans biais à variance minimum, inégalité de l'information. Propriétés asymptotiques des estimateurs. Intervalles de confiance et précision. Éléments de base de la théorie des tests. Probabilité critique, puissance en relation avec la taille d'échantillon. Relation entre tests et intervalles de confiance. Tests pour des données discrètes.
Étude des distributions échantillonnales classiques: T2 de Hotelling; loi de Wishart; distribution des valeurs et des vecteurs propres; distribution des coefficients de corrélation. Analyse de variance multivariée. Test d'indépendance de plusieurs sous-vecteurs. Test de l'égalité de matrices de covariance. Sujets spéciaux.
Nombre aléatoire. Simulation de lois classiques. Méthodes d'inversion et de rejet. Algorithmes spécifiques. Simulation des chaines de Markov à temps discret et continu. Solution numérique des équations différentielles ordinaires et stochastiques. Méthode numérique d'Euler et de Runge-Kutta. Formule de Feynman-Kac. Discrétisation. Approximation faible et forte, explicite et implicite. Réduction de la variance. Analyse des données simulées. Sujets spéciaux.
Rappel sur les principales notions de statistique mathématique et sur la statistique asymptotique. Introduction à la théorie des copules. Description des modèles de dépendance bidimensionnels et multidimensionnels les plus populaires et exploration exhaustive des propriétés de ces copules. Inférence statistique dans les modèles de copules : estimation de paramètres, copule empirique, tests d'adéquation et tests d'hypothèses composites. La méthode delta fonctionnelle et ses nombreuses applications, notamment en inférence de copules. Survol des avancées récentes, incluant les tests de rupture, l'étude de la dépendance conditionnelle, la modélisation de la dépendance spatiale et l'utilisation de la fonction caractéristique. Les objectifs spécifiques de ce cours sont : de maîtriser la théorie des copules, de connaître les principales méthodes d'inférence concernant les copules, d'être au fait des principaux développements récents, de bien connaître la littérature sur les copules, d'être capable de mettre en oeuvre les méthodes statistiques avec le logiciel Matlab (estimation de la puissance de tests, analyse de jeux de données).
This course introduces the theory and practice of time series analysis. Both time and frequency domain methods will be discussed. The objective of this course is to learn and apply statistical methods for the analysis of data that have been observed over time. The Analyses will be performed using the freely available package ITSM, which accompanies the textbook. Topics covered include:
The first part of this course covers materials such as Markov chain, branching processes and optimal stopping for Markov chains. The second part covers Brownian motion and its properties, continuous time martingales and stochastic integral. Girsanov transform, Feynman-Kac formula and stochastic differential equations will also be introduced.
This course is an introduction to statistical learning techniques. Some applications to data science will be illustrated. Topics covered include: cross-validation, regression methods (linear and non-linear models: GLMs, GAMs; variable selection methods; shrinkage methods: ridge regression and LASSO), classification methods (K-nearest neighbors, linear and quadratic discriminants, logistic regression, support vector machines), tree-based methods, introduction to neural networks, unsupervised learning, (clustering: K-means, hierarchical clustering; principal component analysis).
This course is an introduction to reinforcement learning techniques. It requires extensive programming with the R language. Topics covered include: Multi-armed bandit problem, Markov Decision Problems, Dynamic Programming, Monte-Carlo solution methods, Temporal difference methods, Multi-period Approximation methods, Policy gradient.
Exponential families, link functions. Inference and parameter estimation for generalized linear models; model selection using analysis of deviance. Residuals. Contingency table analysis, logistic regression, multinomial regression, Poisson regression, log-linear models. Multinomial models. Overdispersion and Quasilikelihood. Applications to experimental and observational data.
Simple random sampling, domains, ratio and regression estimators, superpopulation models, stratified sampling, optimal stratification, cluster sampling, sampling with unequal probabilities, multistage sampling, complex surveys, nonresponse.
Stationary processes; estimation and forecasting of ARMA models; non-stationary and seasonal models; state-space models; financial time series models; multivariate time series models; introduction to spectral analysis; long memory models.
Sufficiency, minimal and complete sufficiency, ancillarity. Fisher and Kullback-Leibler information. Elements of decision theory. Theory of estimation and hypothesis testing from the Bayesian and frequentist perspective. Elements of asymptotic statistics including large-sample behaviour of maximum likelihood estimators, likelihood-ratio tests, and chi-squared goodness-of-fit tests.
Introduction to concepts in statistically designed experiments. Randomization and replication. Completely randomized designs. Simple linear model and analysis of variance. Introduction to blocking. Orthogonal block designs. Models and analysis for block designs. Factorial designs and their analysis. Row-column designs. Latin squares. Model and analysis for fixed row and column effects. Split-plot designs, model and analysis. Relations and operations on factors. Orthogonal factors. Orthogonal decomposition. Orthogonal plot structures. Hasse diagrams. Applications to real data and ethical issues.
Principes de l’analyse bayésienne; loi à priori et à postériori, inférence statistique et théorie de la décision. Méthodes computationnelles; méthodes de Monte Carlo par chaînes de Markov. Applications.
Rappels et compléments sur la théorie du modèle linéaire : moindres carrés, théorèmes de Gauss-Markov et de Cochran, inférence. Modèle à effets fixes et aléatoires. Plan incomplet. Plan à mesures répétées.
Principes d'inférence : estimation ponctuelle, distribution des estimateurs, test d’hypothèse, région de confiance. Approche bayésienne. Méthodes de rééchantillonnage. Estimation non paramétrique. Applications modernes de la statistique.
Analyse en composantes principales. Analyse des corrélations canoniques et régression multidimensionnelle. Analyse des correspondances. Discrimination. Classification. Analyse factorielle d'opérateurs.
Théorie des probabilités. Théorie abstraite de l'intégration. Mesures de Borel, Espaces Lp. Théorème de Radon-Nikodym. Intégration sur les espaces produits et le théorème de Fubini. Espérances conditionnelles.
Théorie des modèles linéaires généraux. Théorie des modèles linéaires généralisés. Régression logistique. Modèles log-linéaires.
Cibles de formation
Objectif général :
Développer les connaissances statistiques nécessaires pour pouvoir construire des modèles statistiques adaptés à répondre à une problématique précise.
Objectif spécifique :
– Apprendre la théorie statistique pour mieux construire, appliquer et interpréter différents modèles statistiques appliqués aux sciences de la vie.
– Devenir familier avec la recherche primaire en modélisation statistique pour les sciences de la vie.
– Gagner de l’expérience à travailler de façon collaborative sur des problématiques liées au développement et à l’application de méthodes statistiques.
Contenu
Modélisation linéaire et nonlinéaire, modélisation de données univariables et multivariables complexes en sciences de la vie. Implémentation de modèles statistiques.
Martingales en temps discret et continu, filtrations en temps discret et continu, temps d’arrêt, théorème d’arrêt de Doob, processus de variation quadratique, processus de Wiener, intégrale d’Itô, lemme d’Itô, changement de mesure, théorème de Girsanov.